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ABSTRACT 
 

With the adaptation of UNAIDS recommended “Fast-Track approach” for tackling the 

AIDS epidemic, the world is committed to ending it by 2030. Nevertheless, enormous 

challenges lie ahead in ending the epidemic completely, with approx. 2.1 million new HIV 

infections case worldwide in 2015. Development of resistance against anti-retroviral drugs 

owing to mutations in the viral enzymes reduce the odds against AIDS.  

Computational modeling techniques have emerged as an indispensable tool in modern 

drug discovery process and aid in understanding the complex biological phenomena. 

Comprehensive in silico investigation were performed in this work such as quantitative 

structure-activity relationship (QSAR), matched molecular pair analysis (MMPA), molecular 

docking, molecular dynamic (MD) simulations, dynamic pharmacophore (Dynophore), 

principle component analysis (PCA), MM-PBSA based binding free energy calculations.  

As the first phase of this project, QSAR modeling and scaffold analysis of 289 

pyrimidine derivatives were performed with non-nucleoside HIV RT inhibitory activities 

(NNRTI). The Associative Neural Network (ASNN) along with some other common machine 

learning methods were applied to develop a QSAR model for the anti-HIV RT activities. 

Scaffold-based analysis and molecular docking of the compounds used in the QSAR model 

identified a potential chemical scaffold. The results showed that scaffold-based analysis of the 

QSAR model could be helpful in identifying potent scaffolds for further exploration than 

analyzing the overall model. Matched molecular pair analysis (MMPA) was applied to the 

QSAR model to characterize molecular transformations causing a significant change in the 

anti-HIV activity. Interactions of few selected NNRTIs representing the identified scaffolds 

with HIV-1 RT were further studied in detail with MD simulations in our next stage of the 

project.  

The K103N and E138K mutations in HIV RT are largely linked with treatment failure 

of the EFV (efavirenz) and RPV (rilpivirine), respectively when combined with tenofovir and 

emtricitabine. The K103N mutation had emerged as a clinical resistance mutation upon 

treatments with EFV, and it confers an almost uniform level of cross-resistance to most 

NNRTIs, except for the second generation of NNRTIs such as RPV and ETR (etravirine). RPV 

is a second-generation Di-aryl pyrimidine (DAPY) derivative, known to effectively inhibit the 

wild-type (WT) as well as various mutant RT such as K103N. The RT alongside protease has 
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been the main target of anti-HIV drugs used in multidrug combination therapy. In our second 

study, we performed a cumulative 240 ns of molecular dynamic (MD) simulations of WT HIV-

1 RT and its corresponding K103N mutated form, complexed with RPV. Conformational 

analysis of the NNRTIs inside the binding pocket (NNIBP) revealed the ability of rilpivirine 

to adopt different conformations, which is possibly the reason for its reasonable activity against 

mutant HIV-1 RT. Binding free energy (MM-PB/GB SA) calculations of RPV with mutant 

HIV-1 RT were in agreement with experimental data. We also investigated the dynamics 

interaction patterns during the MD simulations using Dynophores, a novel approach for MD-

based ligand-target interaction mapping. The results from this interaction profile analysis 

suggest an alternative interaction between the linker N atom of rilpivirine and Lys101, 

potentially providing the stability for ligand binding.  

To further pursue the goal, in our next study, we performed MD simulations of WT and 

E138K mutant RT complexed with RPV, EFV, and ETR. The E138K is a non-polymorphic 

mutation in the p51 subunit of RT that is selected preferentially in patients receiving RPV and 

reduces its susceptibility up to 5-fold. In our previous study, we have explored the molecular 

level understanding of the binding of RPV to K103N mutated HIV-1 RT. Which has suggested 

that RPV’s torsional flexibility (‘‘wiggling’’) and repositioning and reorientation within the 

pocket (‘‘jiggling’’) makes it withstand the drug resistance. In our third study, we present MD 

simulation of wild-type (WT) and E138K HIV-1 RT in complex with EFV, ETR, and RPV. 

Additionally, MD simulations of K103N RT complexed with RPV is also presented. The main 

motivation behind this study is to understand why second generation NNRTIs are able to 

bypass certain drug resistance mutation such as K103N, while at the same time being 

susceptible to E138K. Understanding of dynamics of NNRTI binding and effect of the mutation 

on drug binding is helpful in designing new inhibitors with improved resistance tolerance. 
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CHAPTER 1 

 

1.1. Background and rationale 
 

According to a 2012 WHO estimate, 35.3 million people were living with HIV/AIDS 

worldwide [1] , with a significant number of these infections being resistant to anti-retroviral 

therapies. With the adaptation of UNAIDS recommended “Fast-Track approach” for tackling 

the AIDS epidemic, the world is committed to ending it by 2030. Nevertheless, enormous 

challenges lie ahead in ending the epidemic completely, with approximately 2.1 million new 

HIV infections cases worldwide as per the WHO report in 2015 [2].  

HIV utilizes Reverse Transcriptase (RT), an enzyme that makes copies of cDNA from 

RNA, a process called reverse transcription. RT, an important enzyme in HIV-1, catalyzes the 

transcription of the viral single-stranded (ss) RNA into double-stranded (ds) DNA. The HIV-1 

RT consists of two subunits, the larger p66, and the smaller p51 [3], with the polymerase and 

ribonuclease H (RNase H) catalytic sites being located on the former [4]. The polymerase 

domain of HIV resembles the right hand with fingers, thumb, palm, and connection sub-domain 

[4]. The thumb and finger sub-domains of RT undergo conformational changes to perform the 

process of reverse transcription. The enzyme Reverse transcriptase (RT) alongside protease has 

been the main targets of anti-HIV drugs used in multidrug combination therapy. Anti HIV-1 

RT agents are chemical compounds targeting the RT enzyme, thus effectively blocking the 

progression of the virus. There are two different class of drugs targeting the HIV-1 RT; NNRTI 

(non-nucleoside reverse transcriptase inhibitors) and NRTI (nucleoside reverse transcriptase 

inhibitors) both target a different aspect of the RT functioning. The NNRTIs bind in the binding 

pocket is approximately 10 Å away from the polymerase in RT and disrupts the conformational 

flexibility of the enzyme [3].  Pyrimidine derivatives were synthesized for decades and have 

been actively pursued as NNRTIs [5]. Two main series of pyrimidine derivatives are DABO 

(Dihydro-alkoxy-benzyl-oxo pyrimidine) and DAPY (Di aryl pyrimidine) [6].  

The higher rate of mutation in HIV strains and the subsequent development of resistance 

to the NNRTIs is a major issue in managing HIV infection.  This highlights the need for the 

rapid and rational development of NNRTIs. Development of resistance against anti-retroviral 

drugs owing to the mutations in the viral enzymes reduce the odds against AIDS. At present 
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there are four approved drugs in the NNRTI class –nevirapine (NEV), efavirenz (EFV), 

etravirine (ETR), and rilpivirine (RPV) (See FIGURE 7)— while delavirdine (DLV) was 

approved in 1997, but now is not recommend as part of initial therapy.  

A crucial role of RT in the life cycle of HIV-1 makes it the prime target of anti-retroviral 

therapy, such as non-nucleoside reverse transcriptase inhibitors (NNRTIs) [6]. This makes RT 

an attractive target for anti-retroviral drugs like Non-nucleoside Reverse Transcriptase 

Inhibitors (NNRTIs) [6]. This study deals with the molecular modeling studies of NNRTIs and 

HIV-1 RT using scaffold based QSAR, matched molecular pair analysis (MMPA), molecular 

docking, MD simulation studies and dynamic pharmacophore studies. An overview of the 

thesis and research presented in it is described briefly in section1.3.    

 

1.2. Aims and objectives 

 

The prime objective of this thesis is to understand the relationship between the chemical 

structure of NNRITs and its anti-HIV activity as well as its dynamic interaction with WT and 

various mutant RT structures. A detailed molecular level understanding is required for the 

design of novel and better HIV-1 RT inhibitors. There are three key goals: 

1. To develop a robust QSAR model for selected NNRTIs that could predict anti-HIV RT 

activity. Moreover, to identify a potential chemical scaffold for further optimization, the 

aim being to understand the underlying structural changes that could contribute to 

improving the anti-HIV activity of the NNRTI. To achieve this goal QSAR modeling was 

combined with molecular docking studies and MMPA on the selected NNRTIs to provide 

a deeper insight into the computer-aided design of novel molecules against HIV RT. 

2. Our scaffold-based QSAR study [7] identified two potential ligand scaffolds against HIV-

1 RT. This motivated an investigation of the dynamics of HIV-1 RT sub-domains in WT 

and K103N mutant, complexed with rilpivirine using explicit MD simulation. To map the 

dynamic interaction pattern between ligand and RT, dynamic pharmacophores 

(dynophore) was performed on the MD snapshots.  

3. To perform the MD simulation and analysis of wild-type (WT) and E138K HIV-1 RT in 

complex with efavirenz (EFV), etravirine (ETR), and rilpivirine (RPV), in order to gain 
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understanding the dynamics of NNRTI binding and effect of mutation on drug’s binding 

affinity, which is helpful in designing new inhibitors with better resistance tolerance. 

 

1.3.  Overview of the study 
 

Following is the general overview of the chapters in this thesis: 

Chapter 1: Summarizes the background rationale of research, aims, and objectives of this 

work, and structure of the thesis. 

Chapter 2: Describes the HIV and AIDS, different anti HIV-1 enzymes and its inhibitors and 

emergence of drug resistance in HIV.  

Chapter 3: Deals with the theoretical framework of the various computational methods used 

in this study.  

Chapter 4: This is the published work, presented in the final format as requested by the Journal 

of Chemometrics and Intelligent Laboratory Systems (ISSN: 0169-7439). The paper is entitled 

“QSAR models and scaffold-based analysis of non-nucleoside HIV RT inhibitors”, and present 

some interesting insight into the different scaffolds of pyrimidine derivatives as NNRTI. In this 

chapter, we have described the scaffold based QSAR of selected NNRTIs and few potential 

chemical scaffold is identified for further optimization. Matched Molecular Pair analysis 

(MMPA) was also applied to characterize molecular transformations causing a significant 

change in the anti-HIV activity.  

Chapter 5: This is the published work, presented in the final format as requested by the RSC 

Molecular Biosystems. The paper is entitled “Molecular insight on the binding of NNRTI to 

K103N mutated HIV-1 RT: Molecular dynamics simulations and dynamic pharmacophore 

analysis”. In this chapter, a cumulative 240 ns of molecular dynamic (MD) simulations of WT 

HIV-1 RT and its corresponding K103N mutated form, complexed with rilpivirine, is presented. 

Conformational analysis of the NNRTI inside the binding pocket (NNIBP) as well as binding free 

energy (MM-PB/GB SA) calculations of rilpivirine with mutant HIV-1 RT is also presented.  

Chapter 6: This work is under submission. In this study, a cumulative 1 µs of MD simulation 

of wild-type (WT) and E138K HIV-1 RT complexed with efavirenz (EFV), etravirine (ETR), 
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and rilpivirine (RPV) is presented. Additionally, MD simulation of K103N RT complexed with 

RPV is also presented.  
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CHAPTER 2 
 

2. About AIDS and HIV 
 

2.1. Introduction 
 

Acquired Immune Deficiency Syndrome – a spectrum of clinical conditions – caused by 

Human Immunodeficiency Virus (HIV) is characterized by the vulnerability of victim to 

opportunistic pathogens and increased risk of Kaposi's sarcoma and other rare forms of cancer 

[8]. As its name suggests, HIV largely infects human’s CD4+ T cells, macrophages, and 

dendritic cells [9, 10]. After infecting the cells, HIV takes control of host cellular machinery to 

synthesize viral proteins and replicates rapidly. One of the key symptoms of HIV infection is 

the low count of circulating CD4+ T cells. When enough number of T cells have been infected 

by HIV, the host immune system can no longer perform its normal functions, and the victim 

becomes susceptible to other infections. Maximum cases of AIDS worldwide are caused by the 

more infectious subtype HIV-1. For the same reason, most studies of HIV (including this 

thesis) focus on the HIV-1 subtype. 

This chapter briefly describes the historical background, lifecycle, prevention and treatment of 

AIDS. A brief discussion on different types of anti-retroviral drugs and their use is also 

presented. In this chapter, the focus will be on HIV-1 Reverse Transcriptase (RT) and drug 

discovery of anti-RT agents.  

2.2. Discovery of AIDS/HIV 
 

The first clinical occurrence of AIDS emerged between late 1980 and early 1981 when a group 

of gay men inexplicably presented with a rare condition known as Pneumocystic carinii 

pneumonia (PCP) [11] , followed by the several reports of rare skin cancer Kaposi’s sarcoma 

(KP) in another group of men [12]. Both the conditions are associated with severely 

compromised immune systems and T cells were suspected to be the target of infection. The 

condition was soon named acquired immunodeficiency syndrome (AIDS). Two years later a 
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novel virus was isolated from patients with AIDS [13, 14] and independently named 

lymphadenopathy-associated virus (LAV) and human T lymphotropic viruses type III (HTLV-

III). Subsequently, in 1986, it was discovered that both the virus is same and belong to the 

Retroviridae family of viruses, thus renamed Human Immunodeficiency Virus (HIV) [15].  

2.3. Origin and classification of HIV 

HIV can be divided into two subtypes: HIV-1 and HIV-2, former being the major cause of 

AIDS. Current understanding places the appearance of HIV infection in humans via zoonosis 

that originated in primate-to-human species-jumping events. In the case of HIV-1 and HIV-2 

strains, these transfer events occurred in Central and West Africa, most likely at several times. 

Simian immunodeficiency virus of chimpanzees (SIV cpz) –retroviruses able to infect at least 

45 species of primates – is believed to be the immediate precursor to HIV-1 [16]. Pathogenic 

human retroviruses include lentiviruses HIV-1 and HIV-2 and onco-viruses includes HTLV-1 

and HTLV-2. According to phylogenetic classification, HIV-1 can be sub-divided into four 

main groups designated as M, N, O and P group [17].  

2.4. Epidemiology of HIV-1 

The HIV infection was originally confined primarily to North America, Western Europe, and 

parts of sub-Saharan Africa, however, it has spread throughout the world, with increasing 

heterogeneity. FIGURE 1 shows a world map with HIV prevalence rates by country, southern 

Africa share around 10-20 % of the global burden of HIV.  
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Figure 1: Geographical distribution of HIV.  

Geographical distribution of HIV (prevalence rates by country), stats for highly affected sub-Saharan countries are shown 
additionally. Data from UNAIDS AIDS info epidemiological Status 2015 are available at http://aidsinfo.unaids.org/, accessed 

July 26, 2016. 

As per UNAIDS fact sheet on AIDS, globally 36 million people were living with HIV in 2015, 

where 2.1 million being newly infected by HIV [18]. Sub-Saharan Africa is the most affected 

region with 66% of the global population of HIV-infected people. South Africa has the highest 

prevalence of HIV, with approximately 5.6 million people living with HIV [1, 18]. In Asia and 

the Pacific, there were 5.1 million people living with HIV in 2015, approximately 2.5 million 

of these cases are in India, where however the prevalence is only about 0.3%. Whereas, 

according to a recent estimate, there are 2.4 million people living with HIV in western and 

central Europe and North America [18].  

The current AIDS pandemic can be described in two forms of HIV transmission. The first 

method involves sexual transmission, including both homo and heterosexual practice. The 

second asexual method includes mother-to-child transmission, transmission via infected blood 

and sharing injection needles among drug users. In the majority of countries in sub-Saharan 

Africa, the epidemic is attributed to heterosexual transmission. Similarly, the main mode of 

transmission in the Caribbean is via heterosexual means, whereas, in Asia and Eastern Europe, 

the most common transmission route is via heterosexual transmission and injecting drug users. 

The prevalence of sexually transmitted diseases, the practice of scarification, unsafe blood 

transfusions, and the poor state of hygiene and nutrition in some areas may all be assisting 

http://aidsinfo.unaids.org/
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factors in the spread of HIV-1[19], whereas, some religious practices [20] and male 

circumcision [21] are shown to prevent the HIV prevalence.  

2.5. The Pathophysiology of HIV Infection 

The interactions between the HIV and the human immune system are unusually complex and 

follow a chronic course of the disease, as evinced by the variable rates of disease progression 

observed in HIV-infected persons. The CD4 and a chemokine co-receptor, typically either 

CCR5 or CXCR4, are indispensable for viral entry into target cells, whereas other receptors 

are believed to expedite infection or transmission of HIV. After the virus enters the body, there 

is a rapid migration to regional lymph nodes, followed by dissemination via the bloodstream 

to various lymphoid, leading to an abundance of virus in the peripheral blood. During primary 

infection, the level of viral load may reach several million virus particles per milliliter of blood 

and a significant drop in the count of circulating CD4+ T cells. Although it’s debatable that 

which cells are infected first, nonetheless, dendritic cells (DCs), especially the Langerhans 

cells, as well as macrophages and resting CD4+ T cells are all potentially among the first cells 

to be targeted by HIV [22]. Initial infection with HIV-1 is often associated with ̀ acute retroviral 

syndrome', which exhibits flu-like symptoms such as fevers, sore throats, swollen lymph nodes 

and rashes [23, 24]. This early stage of the infection leads to the loss of mucosal CD4+ T helper 

lymphocytes. These are the main targets of HIV, although the virus can infect several other cell 

types such as macrophages. It is the loss of CD4+ T cells which brings about the clampdown 

of the immune system, resulting in AIDS. The main function of the T helper cell is to regulate 

immune responses by the secretion of specialized factors that activate other white blood cells 

to fight infections. They control CD8+ lymphocytes which are responsible for directly killing 

certain tumor cells, cells infected by viruses and some parasites. Although these symptoms 

usually subside within 1 to 2 weeks, but main symptoms, characteristic of AIDS might not 

appear for years after a person is infected. This early stage of the infection leads to the loss of 

the bulk of mucosal CD4+ T cell [25]. The body unveils a strong immune defense to the initial 

high levels of virus, with infected CD4+ cells rapidly being removed. The initial results of this 

response are a lowering in the number of viral particles in circulation and the temporary 

recovery of CD4+ cell levels. The destruction of infected cells is balanced by the body's 

production of new CD4+ cells and a steady state, in which most CD4+ cells are uninfected. 

FIGURE 2 shows the initial infection and propagation of human HIV infection.  
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Figure 2: propagation of human HIV infection. 

 Initial infection and propagation of human HIV infection. Figure adapted from “The Immunology of Human 
Immunodeficiency Virus Infection”, accessed July 27, 2016 [26]. 

 

2.6. The Structure and Organisation of HIV Genome 

HIV is a lentivirus, a member of a subfamily of Retroviridae with some difference in structure 

from other retroviruses, and complex gene expression and replication. HIVs are initially 

assembled and released from infected cells as spherical immature particles (virion) containing 

precursors of Gag and Gag-Pol proteins that ultimately make up the mature virus. Mature HIV 

is enveloped by a lipid bilayer and roughly spherical in shape with a diameter of about 120 nm 

[27] (FIGURE 3). Lipid bilayer of viral envelope is dotted with spikes of the glycoproteins 

gp120 and gp41, which are responsible for binding to the host cell. The envelope surrounds the 

https://en.wikipedia.org/wiki/Nanometre
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nucleocapsid core which contains viral genetic material, three essential enzymes; integrase 

(IN), reverse transcriptase (RT) and protease (PR); accessory proteins and some cellular 

factors. The genetic material of HIV consists of two copies of non-covalently linked, single-

stranded RNA and is transcribed it into DNA by the enzyme reverse transcriptase (RT) [28]. 

Viral RNA is enclosed within a conical nucleocapsid with approximately 2000 molecules of 

p24 protein [29].  

 

Figure 3: Structure of HIV with its capsid and important enzymes 

 

HIV genome encodes multiple viral proteins, belonging to three classes viz. structural proteins, 

essential regulatory proteins, and accessory regulatory elements. The name and function of 

these encoded proteins are given in TABLE 1. The HIV genome contains three main genes 

arranged from 5ˈ to 3ˈ end in order starting from, gag (group-specific antigen), pol 

(polymerase) and ending in env (envelope) (see FIGURE 4). These genes encode for the vital 

structural proteins and enzymes necessary for replication of HIV [30]. The gag encodes a 

polyprotein that is cleaved into three proteins i.e. matrix (MA or p17), capsid (CA or p24), and 

nucleocapsid (NC or p7). Together, these three proteins provide the basic physical 

infrastructure of the retrovirus.  
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The pol gene also encodes a polyprotein, which is cleaved into the three functional 

enzymatic proteins, viz. protease (PR), reverse transcriptase (RT) and integrase (IN). Together, 

these enzymes provide the basic cellular machinery by which retroviruses replicate. Protease 

catalyzes the proteolytic cleavage of the polypeptide chains (like gag and pol polyprotein) into 

functional proteins. RT, an important enzyme in HIV-1 which is undertaken in this thesis, 

catalyzes the transcription of the viral single-stranded (ss) RNA into double-stranded (ds) 

DNA. HIV RT consists of two subunits, the larger p66 and the smaller p51 [3], with the 

polymerase and ribonuclease H (RNase H) catalytic sites being located on the former. A 

detailed account of structure and function of HIV-1 RT is given in section 2.9. Integrase 

catalyzes the incorporation of the reverse transcribed viral DNA into the host chromosomes, in 

order to utilize the host cellular machinery to transcribe the other viral proteins. 

Table 1: protein products of the HIV genes  

Entire protein products of the HIV genes with their structural information and function [29, 31].  

Class 
Encoding 

gene 
Chain Protein Function 

Structural 

gag 
GAG 

POLYPROTEIN 

MA (p17) Stabilizes the viral particle 

CA (p24) Core antigen capsid protein 

p6 
Mediates interactions between Gag and 

Vpr 

NC (p7) Nucleocapsid protein 

pol 
POL 

POLYPROTEIN 

PR (11) 
(protease) 

Catalyzes the cleavage of the 
polypeptide chains into the functional 

proteins 

RT 
(p51/p66) 

Reverse transcribe the viral RNA into 
DNA 

IN (p34) 
Integration of viral DNA into the host 

genome 

env GP160 

SU (gp120) 
Facilitates the binding to CD4, 

macrophages and T lymphocytes 

TM (gp41) 
Transmembrane glycoprotein, along 
with SU helps in the viral entry to the 

host cell. 

tat TAT TAT Regulation of reverse transcription 
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Essential 
regulatory 
elements 

rev REV REV 
Helps in synthesis of major viral 

proteins 

Accessory 
regulatory 
elements 

nef NEF NEF 

Main role in nuclear import of viral DNA 
to the host nucleus 

vpr VPR VPR 

vif VIF VIF 

vpu VPU VPU 

 

 

The env gene encodes for the gp160 protein, which is cleaved into gp120 and gp41 by a host 

protein named furin belonging to the family of pro-protein convertase. Gp120 and gp41 help 

the virus to bind and enter to the host CD4, macrophages, and T lymphocytes cells [32]. The 

genomes of HIV and other lentiviruses (Simian Immunodeficiency Virus (SIV) and Feline 

Immunodeficiency Virus (FIV) comprises regulatory genes in addition to the gag, pol, and env 

which are believed to be responsible for their increased pathogenicity [30].   Regulatory 

elements in the HIV-1 includes essential elements: tat, rev, and accessory element: nef, vpr, 

vif, and vpu. The tat and rev are important elements responsible for changing host gene 

expression and are essential for viral replication in vitro, whereas accessory regulatory 

elements are not essential for replication in certain tissues [31]. To be incorporated into a host 

cell's genome, HIV ds RNA strands must be translated into DNA through reverse transcription 

[28]. Beside transcribing DNA, some regions of 3ˈ and 5ˈ end of RNA are also encoded at the 

two ends of the genome known as LTR (long terminal Repeats, see FIGURE 4) [30]. As evident 

from the FIGURE 4, some regions of the genome is encoded more than once for different 

products which lead to the considerable increase in genetic information due to this phenomenon 

known as frames shifting [30].   
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Figure 4: The Organization of HIV genome 

 

 

2.7. Life cycle of HIV-1 

 

Viruses are unable to reproduce (replicate) by themselves, instead, they need a host cell for it. 

Detailed understanding of the viral life cycle is a crucial factor in facilitating the development 

of anti-HIV treatment strategies. An overview of the HIV replication cycle and the roles played 

by some of the proteins described in the previous section within this cycle is given here. 

Important stages in the life cycle of HIV is shown in FIGURE 5. The events in the life cycle of 

HIV-1 can be divided distinct stages, viz. entry to the host cell which involves binding and 

fusion to the CD4 receptor, reverse transcription, integration, viral replication, assembly, 

release, and maturation.   
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Figure 5: Stages in the life cycle of HIV-1.  

Important stages are numbered and encircled in the red box. It begins with binding of the gp120 to the CD4 receptor 
followed by fusion of the viral membrane and the host cell membrane. The viral genome is released and RT transcribes the 
RNA to DNA. The viral DNA is transported into the nucleus via to be integrated into the host chromosome and the provirus 

is formed. The provirus serves as a template for the production of new viral proteins and RNA genomes. The newly 
transcribed viral proteins and RNA are transported out of the nucleus where they are assembled into new virions. The 

virions are then released, killing the host cells int the process. The final stage is the maturation of the viral particle, marked 
by the cleavage of viral polypeptides and virion is ready to infect new cells.  

 

2.7.1. Entry to the cell 
 

HIV-1 is an enveloped virus and its envelope proteins play an important part in its entry into 

the host cells. The process starts with the binding of gp120 to CD4+ receptor on the target cell’s 

surface. Subsequently, gp41 facilitates the fusion of viral envelope with the cell membrane of 

target cells [33].  Viral entry to the cell begins by the interaction of the gp160 spike (gp120+ 

gp41) and both CD4 and a CCR5/CXCR4 chemokine receptor on the cell surface. The first 

step in fusion involves the strong attachment of the gp120 to CD4. Once gp120 is bound to the 

CD4 protein, the envelope complex undergoes a structural change and gp41 folds into a 

hairpin-like structure. This causes the virus and cell membranes to fuse and the creation of the 

fusion pore in the cell membrane is initiated. The viral genome and enzymes are then released 

into the host cell's cytoplasm through these pores [33].  
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2.7.2. Reverse transcription 
 

Once the viral core is within the host cell, the next key stage in the life cycle is the conversion 

of the single-stranded viral RNA genome into the double stranded DNA which can be 

incorporated into the host cell chromosomes. Before this stage, the core of the virion is re-

organized to create a complex known as the reverse transcription complex (RTC). Viral RNA 

is transcribed into ds DNA by the viral enzyme reverse transcriptase (RT) –a multifunction 

viral enzyme with a distinct polymerase and RNaseH active sites. RT first uses a single strand 

of RNA as a template and create a single strand of DNA, then this DNA strand is transcribed 

into double stranded DNA molecule. At the polymerase active site, incoming nucleotides 

complementary to the RNA or DNA template are added into the growing complementary DNA 

chain. The RNaseH site degrades the viral RNA genome, freeing the DNA copy to act as a 

template for the transcription of the second stranded of DNA. The reverse transcription is an 

extremely errant process with a mutation rate of 53 10 per base pair per replicative cycle and 

the resulting mutations are attributed as the leading cause of drug resistance [34]. 

2.7.3. Integration  
 

Now the viral DNA is ready for the integration with the host chromosome. For the integration, 

viral genome needs to be transported to the host cell’s nucleus, regulatory protein vpr being the 

most important viral factor in this process [35]. The integration of the viral DNA into the host 

cell's genome is carried out by HIV integrase. Integrated viral DNA is also known as 

“provirus", which might remain dormant for the duration of HIV latent stage [36].  

2.7.4. Viral replication, release, and maturation  
 

Once the genetic material of HIV is integrated into the host genome, it is ready to replicate and 

make more copies of viral particles. The integrated DNA provirus acts as a template which the 

host cell translates into RNA, encoding more than 30 RNAs including the HIV genome. Some 

of the newly transcribed viral RNA, undergo splicing to produce mature messenger RNAs 

(mRNAs). These mRNAs are translated into the regulatory proteins Tat and Rev in the 

cytoplasm. As the Rev protein start to accumulates, it binds to copies of un-spliced viral RNAs 

inside the nucleus and makes them leave the nucleus [37]. Some of these full-length RNAs 

function as the genome of new viruses, while others function as mRNAs that are translated to 
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produce the structural proteins Gag and Env. It is believed that the Gag chain is responsible for 

the formation of multimers with Gag-Pol which then bind to copies of the virus RNA genome 

to package them into new virus particles [38]. The new virus particle is then transported to the 

cell membrane for release by various host factors and cellular machinery [39]. The essential 

viral proteins remain inactive within the Gag and Gag-Pol chains of the new virion, rendering 

it non-infectious. It is only after the final step of maturation, involving the cleavage of 

polypeptide chain into active proteins; HIV adopts its fully mature form. Viral protease plays 

its vital role at this stage by cleaving the polypeptide chains into active enzymes [40]. Failure 

of protease to performs its task properly makes virion unable to infect new cells, and HIV can’t 

replicate [41]. This fact has been exploited in anti-retroviral therapy by including protease 

inhibitors in the drug regimen.  

2.8. HIV-1 Antiretroviral Drug Discovery 

 

The primary aim of antiretroviral therapy (ART) is to decrease morbidity, improve the quality 

of life, prolong life, restore and preserve immunity and prevent transmission. Before 1996, only 

a few anti-retroviral options were available against HIV-1 infection. Management of HIV-1 

infection was involved of mainly treatment against the opportunistic infections. Understanding 

of the life cycle of HIV-1 has led to the advance in the anti-retroviral therapy by exploiting 

multiple drugs targets at the specific steps in the viral replication cycle. The first drug 

developed was anti-HIV RT agent named Zidovudine, which was approved in 1987 [42]. The 

major breakthrough in the treatment of HIV-1 infection came in the mid-1990s with the 

development of RT and PR inhibitors.  Later on, it was realized that combining several drugs, 

targeted at enzymes involved in various stages of viral life cycle, was the most effective way 

to treat HIV-1 infection [43]. This approach of combining three or more drugs from at least 

two different classes is referred to as highly active antiretroviral therapy (HAART). Currently, 

there are 25 anti-retroviral agents approved by the US (see TABLE 2), classified into 6 groups 

viz. entry inhibitors, nucleoside reverse transcriptase inhibitors (NRTI), non-nucleotide reverse 

transcriptase inhibitors (NNRTIs), Integrase inhibitors and protease inhibitors (PI) [44]. 

Usually, these drugs are used in combination as the part of HAART. Usual combinations 

include 2 NRTIs along with 1 NNRTI, PI or integrase inhibitors (also known as integrase 

nuclear strand transfer inhibitors or INSTIs).   
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Table 2: FDA-approved anti-HIV drugs. 

 list of FDA approved anti-retroviral agents classified into drug classes according to their viral targets[45].  

Drug class Drug name FDA approval year 

NRTI Abacavir 1998 

didanosine 1991 

Emtricitabine 2003 

Lamivudine 1995 

Stavudine 1994 

tenofovir 2001 

Zidovudine 1987 

NNRTI Efavirenz 1998 

Etravirine 2008 

Nevirapine 1996 

Rilpivirine 2011 

Protease Inhibitors Atazanavir 2003 

Darunavir 2006 

Fosamprenavir (prodrug of 

Amprenavir) 

2003 

Indinavir 1996 

Nelfinavir 1997 

Ritonavir 1996 

Saquinavir 1995 

Tipranavir 2005 

Fusion inhibitors/Entry Inhibitors enfuvirtide 2003 

maraviroc 2007 

Integrase Inhibitors dolutegravir 2013 

elvitegravir 2014 

raltegravir 2007 

Pharmacokinetic Enhancers 

(Increase the effectiveness of an 

HIV medicine) 

cobicistat 2014 

 

Entry or fusion inhibitors works by interfering with the HIV entry or fusion by blocking 

different viral proteins. Currently, available drugs in this class are maraviroc and enfuvirtide. 

Maraviroc targets the CCR5, a co-receptor located on human helper T-cells. Enfuvirtide –a 

peptide molecule— works by binding to gp41 surface protein of HIV and prevent infection of 

host cells [46]. Enfuvirtide must be administered as IV injection to avoid degradation by gut 

enzymes.  
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 NRTIs inhibit the elongation of transcribed product by replacing the normal nucleoside 

with a modified nucleoside, which lacks a 3' OH group, thus terminating the chain elongation 

during the reverse transcription.  NNRTIs bind to an allosteric site ~10 Å away from 

polymerase site of the HIV RT and alters its conformational landscape, thus preventing the 

enzyme from correctly performing the reverse transcription. Protease inhibitor (PI) prevent the 

HIV infection by blocking the protease necessary for the cleavage of gag and gag/pol precursor 

proteins [47]. Virion formed in the presence of PI lacks mature gag and pol polyprotein and 

subsequent protein products. Such virus particles are defective and mostly non-infectious. 

Integrase inhibitors prevent the integration of viral DNA with the host chromosome by 

blocking the integrase enzyme.  

 

 

 

 

 

 

 

2.9. HIV-1 RT structure, function and inhibition  
 

With the discovery of reverse transcriptase (RT) in 1970, the central dogma of life was changed 

to accommodate the prospect that genetic information can proceed in reverse direction i.e. from 

RNA to DNA [48]. The biological process of passage of genetic information from RNA to 

DNA is known as reverse transcription1, mostly observed in retroviruses. Enzyme HIV-1 RT 

catalyzes the conversion of genomic ssRNA into dsDNA after the viral entry into the host cell. 

A brief detail of structure and function of HIV-1 RT is presented in this section.  

                                                           
1 Reverse transcription is the reverse flow of genetic information. Transcription is the first step in the 

gene expression where DNA is copied into its complementary nucleotide chain of mRNA, with the help 

of RNA polymerase enzyme. Transcribed mRNA is then move to cytoplasm, where it takes part in the 

translation: the process of bio-synthesis of proteins. Information contained within the genes (DNA) is 

expressed via the proteins, which control various cellular processes.  
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2.9.1. Structure    
 

HIV-1 RT is an asymmetric heterodimer consist of two subunits. HIV-1 RT starts as a 

homodimer of two 66 kDa subunits with 560 amino acid residues, but later during the protein 

processing, one of the subunits is cleaved by the proteolytic enzyme, leaving it without 120 

residues at the C-terminal. The two subunit are, the larger P66 and the smaller P51, later being 

different than former in its conformation, as the result of proteolytic cleavage [49]. The 3D 

crystal structure pf HIV-1 RT is analogous to the human right hand, with fingers, thumb, palm 

and connection sub-domains (see FIGURE 6). Although subunits p51 and p66 have the same 

amino acid sequences, there are some significant conformational differences. The p51 has no 

cleft and the residues that are involved in the catalytic functions of the enzyme are buried deep. 

The finger of P51 is situated towards the palm sub-domain and the palm is positioned further 

away from the fingers and palm sub-domains as compared to p66. The p51 subunit mainly 

carries out a structural role by serving as a support to p66 and stabilize RT. It is interesting to 

note that the RNase H sub-domain is cleaved from P51 subunit. It has been speculated that the 

proteolytic cleavage of a part of P51 subunit gives an evolutionary advantage to HIV by 

enabling it to encode two protein subunits from the same gene. Thus HIV is able to produce 

the proteins with more than one structure and function [50].  HIV-1 RT is a multifunction 

enzyme with two distinct active sites viz. DNA polymerase and RNase H, both located on P66 

subunit. The discarded portion of P51 unit consisted of RNase H domain. Numerous crystal 

structure of free HIV-1 RT as well complex with drug molecules and RNA/DNA template has 

been solved and studied.    
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(a) 

 

(b) 

Figure 6: Structure of HIV-1 RT 

 (a) P66 subunit (b) both P66 and P51 subunits along with a DNA template. The structure is homologous to the human right 
hand. P51 subunit also has these sub-domains, but lack the RnaseH part. The catalytic amino acids of the Polymerase and 

RnaseH sites are shown in red CPK. Figure is drawn using PDB code 1RT1.  

      

 

2.9.2. Function and molecular mechanism of polymerization 
 

RT has three enzymatic functions; a RNA-dependent DNA polymerase activity to create a copy 

of ssDNA from the RNA template, a DNA-dependent DNA polymerase activity to make 



Chapter 2: AIDS and HIV 

 

39 

 

second DNA template from ssDNA, and a RNase H site to cleave the RNA template from the 

RNA-DNA hybrid. The polymerase and RNase H site of HIV-1 are located on P61 subunit and 

spatially separated by approximately 60 Å from each other. Polymerase site is situated in the 

palm subdomain between thumb and fingers and RNase H at the end of the P66 subunit. The 

polymerase domain comprises of four sub-domains: fingers (residue 1–85 and 118–155), palm 

(86–117 and 156–236), thumb (237–318), and connection (319–426). Three catalytic aspartic 

acids (D110, D185, and D186) forms the active site of the polymerase in the palm region (see 

FIGURE 6) [51].  P51 folds into the same four sub-domains as the polymerase domain of p66 

(fingers, palm, thumb, and connection); yet, the positions of the sub-domains in relation to each 

other are different in p66 and p51 (see FIGURE 6). The RNase H active site is composed of 

three aspartic acids and one glutamic acid (D443, E478, D498, and D549) [51].  

Extensive biochemical and crystallographic studies have led to an understanding of the 

mechanism of the DNA polymerization carried out by HIV-1 RT. The process begins with the 

binding of RT to the viral RNA template, which led to the opening of P66 thumb-finger cleft. 

Next step after the binding of RT with nucleotide sequence is the nucleotide incorporation, 

which starts with the binding of dNTP (nucleoside triphosphates containing deoxyribose) at 

the nucleotide binding site (N site) [52]. Subsequently, thumb of P66 closed down on incoming 

dNTP, in order to accurately line up the 3′-OH of the primer, the phosphate of the dNTP, and 

the polymerase active site [52, 53]. It has been shown that upon binding of the dNTP, certain 

residues in a loop between 60 and 75 of the P66 bends inwardly towards the active site. In 

particular, residues K65 and R72 interact with the incoming dNTP, forming salt bridges with 

the phosphates [52]. Phosphodiester bond is established between the dNTP and the primer with 

the associated release of pyrophosphate. Afterward, the finger of P66 sub-domain opens up to 

let the pyrophosphate leave the active site. The nucleic acid substrate translocates to free the 

nucleotide-binding site in RT for the next incoming dNTP.   

2.9.3. Inhibition of HIV-1 RT  
 

As HIV-1 is a retrovirus that requires RT enzyme to replicates, it is one of the popular targets 

of anti-retroviral drug development [54]. There are two different class of drugs targeting the 

HIV-1 RT. NNRTI and NRTI; both target a different aspect of RT functioning. A brief 

description of drugs inhibiting the HIV-1 RT is given in the following section, with an 
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emphasis on NNRTI, as it is the main focus of this thesis. FIGURE 7 shows chemical structure 

of US FDA-approved NNRTI agents.  

 

Figure 7: Chemical structure of FDA-approved NNRTI 

 

 

 

2.9.3.1. Non-nucleoside RT inhibitors (NNRTIs) 
 

NNRTIs are, in general, small (< 600 Da), hydrophobic compounds having a diverse range of 

chemical scaffolds. They inhibit the virus by binding non-competitively at the allosteric site 

[55] known as NNRTI binding pocket (NNIBP), located approximately 10 Å from the 
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polymerase active site. NNIBP is neither present in apo nor in substrate-bound RT but comes 

into existence after drug binds to RT due to the rotation of side chains of Y181 and Y188. The 

hydrophobic binding pocket is in the hinge between the thumb and palm sub-domains and 

consists of L100, K101, K102, K103, V106, T107, V108, V179, Y181, Y188, V189, G190, 

F227, W229, L234 of p66 and E138 of p51 [56]. Several modes of entry to the pocket has been 

proposed, most common being near the p66/p51 interface surrounded by K101, K103, and 

V179. As a result of NNRTI binding, the normal conformational landscape of RT is disrupted, 

thus blocking its enzymatic activity [54]. There are four US FDA approved drugs in the NNRTI 

class (see FIGURE 7, TABLE 2). Various theories have been put forward explaining the method 

of RT inhibition by NNRTIs. A brief account of main theories is given below: 

 According to one theory, NNRTI binding disrupts the conformation of palm domain of 

RT, effectually altering the geometry of polymerase site. It is suggested that the process of 

polymerization by RT is extremely reliant on the alignment of the catalytic residue 185 and 

186, thus any distortion of the active site inhibits its catalytic function [56]. 

 Another model is known as ‘arthritic thumb model’ suggests that NNRTI binding 

interrupts the movement of thumb thus adversely affecting the RT function [57]. NNRTIs are 

also shown to block the RT by altering the dimerization of its two subunits and subsequently 

affect the structural stability [58]. 

 

2.9.3.2. Nucleoside RT inhibitors (NRTIs) 
 

NRTIs are competitive inhibitors that compete with the natural dNTP substrate for 

incorporation into the growing DNA chain. NRTI inhibit the elongation of transcribed product 

by replacing the normal nucleoside. They share a similar structure to dNTP’s in that they both 

have a nitrogenous base and are attached to a ribose sugar, but NRTIs lacks a 3' OH group, 

thus terminating the chain elongation during the reverse transcription. There are currently seven 

NRTIs approved by US FDA to be used as the part of the anti-retroviral regimen (see TABLE 

2 and FIGURE 8). Once the drug enters cells they need to be phosphorylated by cellular kinases 

to become active, hence NRTIs are administered as pro-drugs.   
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Figure 8: Chemical FDA structure of approved NRTI 

 

2.10. Drug resistance in HIV 

 

Regardless of advances in anti-HIV therapy, HIV infection remains an immense challenge due 

to the rapid onset of mutation instigating drug resistance. Though most HIV infections seem to 

be started by a single virus particle, enough mutations occur within a few years of infection to 

generate a group of related viruses with the differing genome. An HIV-1 infected person 

harbors a group of HIV-1 variants primarily originated from a single virus that had spread the 

infection [59]. There are various factors that contribute to the development of resistance with 

the possibility that resistant HIV can spread from person to person. The major reasons for the 

rapid emergence of drug resistance are:  

1.  The HIV RT is highly error-prone and lacks a proofreading ability, thus it has high 

mutation frequency.  
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2.  High replication rate of HIV (109-1012 new virus produced daily in untreated patients) 

Due to this fact, many HIV mutants are produced, which differ in their susceptibility to ward 

anti-retroviral drugs, some develop into drug-resistant HIV strains. The positions of mutations 

that confer resistance to either NRTI or NNRTI drugs are mainly situated in the polymerase 

domain of RT [60].  

2.10.1. Drug resistance in Reverse Transcriptase (RT) 
 

Mutations in RT leading to drug resistance against NNRTI and NRTIs are shown in FIGURE 

9. In the case of NRTIs, mutation either causes the enzyme to evolve greater specificity for the 

natural substrates [61] or it leads to rise in the efficiency of an excision reaction [62, 63]. The 

heightened specificity for the substrate is caused by mutations close to the dNTP binding site, 

whereas mutation in the distal region usually results in an increase in the efficacy of the 

template removal reaction. 

 Single residue changes are usually enough to confer high-level resistance to the 

NNRTIs. In the case of NNRTIs, almost all the drug resistance mutations are seen in and around 

the NNRTI binding pocket [64-66], particularly mutations at positions K103, Y181, Y188 and 

G190 cause significant effects on resistance (see FIGURE 9). Except for the E138 A/G/K/Q/R, 

all of the mutation is observed in the P66 subunit of RT. Unlike the polymerase site or dNTP-

binding site of RT, the residues forming the NNIBP are not highly conserved, therefore, HIV-

1 has a comparatively lower genetic barrier for developing NNRTI-resistance mutations than 

NRTI-resistance mutations. These mutations are assumed to be sterically altering the NNRTI 

interactions with the NNIBP residues[58]. However, as reported in crystal structures, K100N 

doesn’t alter the drug-binding pocket interactions [67], rather it is believed to affect the drug 

binding by raising the energetic barrier of the NNIBP formation [68].   
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Figure 9: Mutations in HIV RT [69]. 

Mutations associated with drug resistance are shown in red. 

 

However, mutations in NNIBP are not the only reason for the development of drug resistance 

toward the NNRTIs. It has been shown that besides the primary mutations in the binding 

pocket, drug resistance is also caused by the change of amino acids at other positions known 

as accessory mutations [70], which don’t directly interact with the drug. Mutations in the 

connection region of HIV-1 RT are also shown to cause resistance, such as N384I has been 

linked with NVP resistance [71] and the D549N, Q475A, and Y501A mutants have been 

observed to produce resistance to certain NNRTIs [72].  

 HIV-1 could develop resistance against the nevirapine, in the very beginning of 

treatment. First generation NNRTIs drastically lose their potency against a single common 

NNRTI-resistance mutation such as K103N or Y181C. Second generation DAPY analogues 

could adopt multiple conformations inside the binding pocket, thus maintaining efficacy 

against mutant HIV-1. However, as new drug-resistance forms emerge, understanding the 

molecular mechanism of NNRTI inhibition and resistance caused by different mutations is 

helpful for designing better anti-retroviral agents. The goal of such efforts being the discovery 

of effective NNRTI, which should overcome the impacts of common drug-resistance 

mutations.  
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CHAPTER 3 

 

Computational methods in drug design and protein modelling 

 

3.1. Molecular Modeling  
 

The field of molecular modelling of Biosystems by computer has been gradually getting 

attention from scientists from diverse backgrounds. Specifically, modelling huge biological 

polymers like proteins, nucleic acids, and lipids require a highly multidisciplinary approach. 

Molecular modeling involves the study of molecular structure and function through theoretical 

and computational methods. The computational modeling involves a range of methods, for 

example, ab initio, semi-empirical quantum mechanics, empirical (molecular) mechanics, 

molecular dynamics, Monte Carlo, free energy methods, quantitative structure/activity 

relationships (QSAR), molecular docking, homology modeling, and many other conventional 

methods [73, 74]. The contemporary research problem being addressed by molecular modeling 

are as fascinating and as complex as the biological systems themselves. An assortment of issues 

is being addressed such as the dynamic structure of a biomolecule, energetics of hydrogen-

bond formation in proteins and nucleic acids, protein folding, the complex functioning of a 

supramolecular aggregate and energetics of ligand-protein binding. Modeling of biomolecules 

offers a systematic way to understand structural/dynamical/thermodynamic phenomena, test 

and develop hypotheses, interpret and extend experimental data, and help better comprehend 

and extend basic laws that rule molecular wonders [73]. The concept of molecular modeling 

started with the idea that geometry, structure, energy, and various molecular properties can be 

computed from physical models. Such models consider atoms as solid sphere connected by 

springs (bonds) with each other. The molecule rotates, vibrates, and translates to take 

energetically preferred conformations as a combined result of the inter and intramolecular 

forces acting upon it. In the next section, the applied molecular modeling techniques in this 

thesis will be briefly discussed.  
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3.2. Quantitative Structure-Activity Relationship (QSAR)  

 

An emerging field in cheminformatics, that deals with the prediction of physicochemical and 

biological properties of molecules with computational models, is referred to as QSAR 

(Quantitative Structure-Activity Relationship). Beside its application in prediction of various 

properties, such as solubility, lipophilicity, toxicity, mutagenicity [75-77], QSAR is now 

routinely employed as a tool in drug design workflow. QSAR is the mathematical modeling of 

chemical structures of compounds and their relationship with biological activity and is actively 

used in drug design [78, 79]. 

  /    /    Activity Toxicity f physiochemical structural properties error    1 

The key notion of QSAR is that molecules with similar chemical structures have similar 

properties and a change in molecular structures results into a change in its biological activities 

and physiochemical properties. There are three main components of the QSAR modeling: 

1. The property to be modeled 

2. Chemical information 

3. The algorithm to model the relationship between the biological end point and the structural 

properties.  

Prediction of the property of a chemical molecule depends upon the acquisition of knowledge 

of property values for a set of similar molecules referred to as the training set, which usually 

contains the results of experimental measurements. An essential concept is that any 

experimental value is associated with certain uncertainty. This is especially true for biological 

data, where often experimental values have a probabilistic meaning. Regrettably, the 

information about the uncertainty of the experimental data is not always available, and often 

users ignore the fact that this assessment is fundamental.  

In the paradigm of drug design, knowledge of the relationship between structural 

properties of chemical compounds and their biological activities is crucial in optimizing lead 

molecules. The construction of QSAR models typically consists of two main steps: (i) 

calculation and representation of structural features (molecular descriptors) of the selected 

compounds; (ii) multivariate analysis for correlating molecular descriptors with the measured 

activities (biological, physico-chemical and ADMET properties). Numerous methods, ranging 
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from simple linear regression to complex machine learning algorithms are applied to explore 

the structure-activity relationships. The linear regression models, in general, allow a relatively 

straightforward interpretation in terms of linear regression coefficients, provided that 

descriptors used in the equation are not correlated. However, the models obtained by machine 

learning methods, such as Neural Network and Support Vector Machine, are more difficult to 

interpret, due to the non-linear nature of the algorithms. The machine learning algorithms could 

be divided into two categories: those for regressions and those for classification. Regression 

methods get a continuous value, whereas classifiers find the category, e.g. the active or non-

active status, the toxicity class etc. FIGURE 10 lists some of the common classification and 

regression methods used in QSAR. In next sections, some of the important technical aspects of 

QSAR methodology will be briefly described.  

 

Figure 10: Machine learning techniques are commonly used to build QSAR models. 

 

3.2.1. Molecular descriptors  
 

To employ machine learning methods – abstract mathematical methods– in QSAR modeling, 

chemical structural information must be represented in numerical form. A set (vector) of the 

numerical description of a chemical compound’s features are referred to as molecular 

descriptors. Due to the complex nature of the molecular structure, it can be represented 

numerically in a fundamentally unlimited number of ways. Thus, the selection of a set of 

optimal descriptors is crucial for successful modeling. The molecular descriptors are separated 
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into two main categories: experimental measurements, such as logP, molar refractivity, dipole 

moment, polarizability, etc. and theoretical molecular descriptors, which are derived from a 

figurative representation of the molecule. The theoretical molecular descriptors can be further 

classified into the three broad categories based on the degree of structural information they 

encode as: 

 0 D descriptors – for example, constitutional descriptors, count descriptors 

 Linear or one-dimensional descriptors - such as molecular weight, the number of 

particular types of atoms or functional groups, the number of fragments etc.  

 2 D descriptors – based on graph theory.   

 3 D descriptors – based on the three-dimensional structure of a molecule. 

An example of some of the descriptors used in this study is given in TABLE 5.  

3.2.1.1. Dragon descriptors 
 

Dragon descriptors encompass a vast variety of 1D, 2D and 3D descriptors grouped into 20 

logical blocks. Spanning a vast variety of descriptor types, the Dragon descriptors are very 

prevalent and are often the first choice for QSAR modeling of various properties [80]. 

3.2.1.2. QNPR descriptors  
 

These descriptors are used for Quantitative Name Property Relationship, thus giving the 

acronym QNPR [81]. The descriptors are calculated straight from the compounds name or 

SMILES representation. For each chemical molecule, either canonical SMILES or IUPAC 

name are split into the fragments of a specified length, which is determined by the 

configuration.  

3.2.1.3. Chemaxon Descriptors 
 

Chemaxon descriptors are a group of molecular descriptors implemented in OCHEM 

platform[82] and can be calculated for any set of molecules. The implemented descriptors are 

divided into 7 groups: Elemental analysis, charge, geometry, partitioning, protonation, isomers, 

and others.  
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3.2.1.4. Inductive Descriptors 
 

Inductive descriptors are based on the Linear Free Energy Relationships (LFER) equations for 

inductive and steric substituent constants. Calculation of the descriptors is based on the 

inductive and steric effects, inductive electronegativity and molecular capacitance of the 

molecule. Such parameters can be easily computed from electro negativities and covalent radii 

of the constituent atoms and interatomic distances, which reflect the different aspects of intra- 

and intermolecular interactions[83].  

3.2.1.5. Fragmentor 
 

The ISIDA Fragmentor descriptors are the part of ISIDA Fragmentor2015 program developed 

at Université de Strasbourg, France. This program is a part of the ISIDA project, which stands 

for “In SIlico Design and data Analysis” and aims to develop tools for the calculation of 

descriptors, the navigation in chemical space, QSAR and virtual screening. The descriptors 

include molecular fragment count based on a series of graph algorithm. They are a type of 

fragments descriptors, which uses 2D Lewis graph representation of the compounds but do not 

consider stereoisomerism [84-88].  

3.2.1.6. ALogPS 
 

It includes two descriptors; (1) ALogPS_logP: octanol/water partition coefficient. (2) 

ALogPS_logS: solubility in water.  

3.2.1.7. GSFrag 
 

The GSFrag program calculates the occurrence numbers of certain special fragments on k=2 to 

10, vertices in a molecular graph G. The molecular fragments consisting of one or more 

disconnected components, where each component is a path (of length 9 or less), a cycle (on 10 

or fewer vertices), or a path (cycle) with a number of attached chains of unit length [89, 90].  

3.2.1.8. MerSy (MERA Symmetry) 
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MerSy descriptors are calculated using a 3D representation of molecules in the framework of 

MERA algorithm and include the quantitative estimations of molecular symmetry with respect 

to symmetry axes from C2 to C6 and to the inversion-rotational axis from S1 to S6 in the space 

of principal rotational invariants about each orthogonal component. 

3.2.1.9. Adriana 
 

Adriana is a group of descriptors calculated by ADRIANA.code – an Algorithms for the 

Encoding of Molecular Structures. It contains a unique group of empirical methods for 

calculating molecular descriptors on a comprehensive geometric and physicochemical basis. A 

multilevel sophisticated hierarchy is used to represent 3D molecular structure. Adriana consists 

of a different set of descriptors such as topological, shape based, and 3D property-weighted 

autocorrelation descriptors.    

3.2.1.10. Spectrophores 
 

Spectrophores are 1D descriptors calculated from the property fields neighboring the 

molecules. The computation of the Spectrophores descriptors is independent of the geometry 

of the molecule which enables the rapid assessment of different molecules.  

3.2.2. Machine learning methods in QSAR 
 

The machine learning methods are typically used for QSAR predictions are based on 

supervised learning. 

3.3. Matched Molecular Pair Analysis (MMPA) 
 

MMPA is a method in cheminformatics in which significant structural changes, within a 

database of drug-like molecules, is established based on experimentally measured data. The 

term was first coined by Kenny and Sadowski [91] in their book titled "Chemoinformatics in 

Drug Discovery". The basis of MMPA-based analysis is the analysis of the chemical datasets 

dealing with pairs of compounds. Such pairs of compounds are known as Matched Molecular 

Pair (MMP), defined as a pair of molecules that differ in only a minor single point change (see 

TABLE 7). 
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3.4. Atomistic Modeling of Proteins 
 

Molecular modeling includes all the theoretical and computational methods, used to study or 

model the molecules at the atomistic level. The molecular modeling is used in varied areas of 

computational chemistry, drug design, computational biology and materials science to study 

diverse molecular systems. Experimental techniques, for instance, x-ray crystallography and 

NMR spectroscopy allow us to determine the 3D protein structures. With the aid of NMR 

spectroscopy, even motions of proteins can be investigated. Nevertheless, in many cases, it is 

not feasible to explore protein structure and dynamics using experimental techniques. In silico 

techniques like homology modeling and molecular dynamics could provide insight in such 

cases. In the following sections, a brief description is given for a variety of such modeling 

techniques, focusing on molecular dynamics (MD). Experimental data are required to model 

the starting atomic configuration of a bio-molecular system for all the simulation approaches. 

A brief overview of experimental techniques is given in appendix I.IV. Thus we begin with a 

short note on the most frequently used techniques for determination of protein structure. 

3.5. Computational modeling approaches used for enhancing structural understanding  
 

The molecular modelling methods deals with the atomistic level description of the molecular 

systems. Different level of details is employed, such as atoms as the smallest individual unit 

(molecular mechanics approach), explicit treatment of electronic waves functions each atom 

(quantum mechanical approach), or a hybrid approach of QM/MM modeling. More details 

about these approaches are given in appendix I.I.  

3.5.1. Molecular dynamic (MD) simulations  
 

Bio-molecular dynamics occur over a wide range of time and space, and the choice of method 

to study them is influenced by the questions asked. MD simulation is a very powerful technique 

in modern molecular modeling, which enables to explore structure and dynamics in depth 

detail—basically, the motion of individual atoms can be traced. Macroscopic properties 

determined in an experiment are not direct observations, but averages over billions of 

molecules. This collection of molecules representing a set of measurable properties is termed 

as statistical mechanics ensemble. MD and other classic simulation methods are dependent on 
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force fields – an empirical calculation of atomic interaction and subsequent evaluation of the 

potential energy of the system as a function of point like atomic coordinates.  A force field 

represents both the set of equations used to calculate the potential energy as well as force 

constants between atoms. Force fields also consist of a set of parameters used to fit the 

equations. In the formalism of MD, the atoms are treated as a small solid ball with a given mass 

and charge. The charges are used to compute an electrostatic force field from which the force 

on each atom in the system can be estimated. The force on each atom can then be used to 

compute the motion of the atoms according to the Newton’s equation of motion. After time t 

new positions of atoms in the systems is updated. This process is then iterated to evolve the 

system configuration. The MD simulation involves a certain level of approximation and for 

most cases, these approximations work well, but they fail in modeling the quantum effects such 

as bond formation or breaking [92, 93]. Nevertheless, MD has been used to study wide varieties 

of biological [94-98] and non-biological [99] systems[100].  

3.5.2. Theory of the MD Simulations 
 

The molecular dynamics method was initially introduced by Alder and Wainwright in late 

fifties [101, 102] to study the interactions of hard spheres systems. The next key development 

was when the simulation using a realistic potential for liquid argon was carried out by Aneesur 

Rahman in 1964 [103]. The foremost MD simulation of a realistic system was on the liquid 

water in 1974 [104]. The first MD simulations of protein appeared in 1977 with the simulation 

of the bovine pancreatic trypsin inhibitor (BPTI) [105]. In 2013 Martin Karplus, Michael Levitt 

and Arieh Warshel were awarded the Nobel prize in chemistry for “the development of 

multiscale models for complex chemical systems”. Now, one regularly finds MD simulations 

of solvated proteins, protein-DNA complexes as well as lipid systems addressing a range of 

subjects including the thermodynamics of ligand binding and the folding of small proteins. In 

a molecular dynamics simulation, the time-dependent behavior of the molecular system is 

obtained by integrating the Newton’s equations of motion using a suitable numerical integrator 

and the potential energy function. The result of the MD simulation is a time series of 

conformations or atomic positions; called MD trajectory. Most molecular dynamics 

simulations are performed under conditions of constant N, V, E (Microcanonical ensemble). 

FIGURE 11 gives an overview of the general methodology of a MD simulation. 
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Figure 11: The protocol of setting up and running a molecular dynamics Simulation. 

In this section, we describe in some detail the steps taken to setup and run a molecular dynamics 

simulation. In the following section, the theoretical basis of MD simulation will be discussed. 

Fundamentally the methodology of MD is very simple. Firstly, all the atoms in a given system 

are assigned coordinates, velocities, and charges. The positions and charges of atoms are then 

used to calculate a potential. This calculated potential is used to compute the force experienced 

by each of the atoms in the simulation. By integrating Newton's laws of motion over a short 

time step a new set of positions and velocities is determined for each of the atoms. The updated 

values can now be re-used into the first step of the calculation and the process is repeated, 

creating a trajectory that describes the positions, velocities and accelerations of the particles as 

they change with time. MD produce information of the atomic systems at the microscopic level, 

including atomic positions and velocities. The conversion of this microscopic information to 

macroscopic observables such as pressure, energy, heat capacities, etc., requires statistical 

mechanics. It is a branch of theoretical physics that studies the average behavior of macroscopic 

systems, using probability theory, where the state of the system is uncertain. Statistical 

mechanics is essential for the study of biological systems by molecular dynamics simulation. 

Extensive details on the subject could be found in textbooks dealings with statistical mechanics 

[106].  
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From a given MD trajectory, the average values of macroscopic properties can be determined. 

MD is deterministic in nature i.e. once the positions and velocities of each atom are known, the 

state of the system can be predicted at any point in time. Molecular dynamics simulations can 

be time-consuming and computationally expensive for a large system. However, with the 

advances in parallel computing and supercomputing clusters, biological systems are being 

investigated at a larger time scale. Simulations of solvated proteins are calculated up to the 

nanosecond time scale, however, simulations into the millisecond regime have been reported. 

3.5.3. Classical Mechanics  
 

MD simulation consists of the numerical, step-by-step, solution of the classical Newtonian 

equations for N-particle system. A system of N-particle can be completely described by 3N 

generalized coordinates qi (where i = 1,2,3. . . 3N), 3N generalized velocities qi and a potential 

energy function V(qi).  

 

 

Force acting on an atom can be given by Newton’s equation of motion. 

 

i i iF ma          2 

 

where Fi is the force exerted on particle i, mi is the mass of particle i and ai is the acceleration of 

particle i. The force is also given by the gradient of the potential energy as: 

 

i iF V         3  

By combining the two equations, we have: 
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where V is the potential energy of the system.  
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The acceleration of an atom is given as the derivative of the potential energy with respect to 

the position, r. 

1 dV
a

m dr
     5 

We can see that, to calculate a MD trajectory, one only needs the initial positions of the atoms, 

an initial distribution of velocities and the acceleration, which is determined using the gradient 

of the potential energy function. The initial atomic positions can be obtained from experimental 

structures, such as the x-ray crystallography or NMR spectroscopy. The initial distribution of 

velocities is determined randomly from a Maxwell-Boltzmann or Gaussian distribution at a 

given temperature and corrected so that the overall momentum is 0. It gives the probability that 

an atom i has a velocity Vx in the x direction at a temperature T. 
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The potential energy is a function of the atomic positions (3N) of all the atoms in the system. 

Due to the complicated nature of this function, there is no analytical solution to the equations 

of motion; they must be solved numerically. Numerous numerical algorithms have been 

developed for integrating the equations of motion such as Verlet algorithm, Leap-frog 

algorithm, Velocity Verlet and Beeman’s algorithm.  

3.5.4. Potential Energy Function and Force Fields 
 

To estimate the force on each atom, it is first essential to compute the potential energy function. 

Although a precise calculation of the potential energy of a N atom system would have to reflect 

the contribution of each individual atom, pair, triplet and so on, most MD packages define the 

potential energy in terms of five components. The energy, E, is a function of the atomic 

positions, R 

( )V R E E
bonded nonbonded

    7 

The Ebonded has three terms (see FIGURE 12) 
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bonded stretch bend rotateE E E E     8 

 

 

Figure 12: The different components of bonded interactions 

 different components of bonded interactions in the interatomic interaction potential of an MD force field. where r governs 
bond stretching, θ the bond angle and ψ the dihedral angle between two atoms separated by three bonds.  

The bonded components of bond stretching, bending and torsional bonded interactions can be 

represented in terms of the deviation of the bond length r, angle θ and dihedral angle ψ from a 

reference, or equilibrium value (see Eq. 9).  
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The contribution of non-bonded interactions has two components, the Van der Waals 

interaction energy and the electrostatic interaction energy. 

non bonded vdw electrostaticE E E      10 

 

The van der Waal's forces are approximated as a Lennard-Jones 6-12 potential (Eq. 11), and 

the electrostatic interaction energy is given by the Coulomb potential (Eq. 12). 
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The constants kr, req, kθ, θeq, etc. are constants which are estimated from standard 

parameterization schemes such as CHARMM [107] GROMOS [108] OPLS-AA [109] and 

AMBER [110]. The requisite parameters are determined by a combination of atoms of varying 

types and fitting to either experimental or ab initio quantum mechanical calculations. This 

approach assumes that the parameters derived from these small subsets of atoms can be applied 

with sufficient accuracy for a larger molecular system of the same set of atoms. Force fields 

may differ in their functional form and in the systems and physical conditions (such as 

temperature and pressure) for which they are parameterized. Two key differences exist in the 

treatment of bonded terms of the force fields. The first is the variable use of “improper” 

dihedrals, which can be used to retain chirality or planarity at an atom center. The second 

dissimilarity is that the CHARMM force field adds an Urey-Bradly angle term, which treats 

the two terminal atoms in an angle with a quadratic term that is subjected to the inter-atomic 

distance. Similar to the bonded terms, force fields also vary in the treatment of non-bonded 

interactions. A detailed comparison of different force fields can be found in the book titled 

“Molecular Modeling of Proteins” [93]. 

AMBER (Assisted Model Building with Energy Refinement) is a family of force fields for 

molecular dynamics of biomolecules. All the MD simulations performed in this work use the 

ff99SB and ff12SB (AMBER force fields), which are parameterized to be suitable for studying 

proteins. For the ligands in the MD systems, General AMBER force field (GAFF) was used, 

which provides parameters for small organic molecules to facilitate simulations of drugs and 

small molecule ligands in conjunction with biomolecules [111].  

There are some intrinsic limitations with the use of any force field. The parameters in the 

frequently used force fields, for example, AMBER, have been validated for equilibrium 

structures over a small timescale but imprecisions might arise when systems drift away from 

the equilibrium or for pressure or temperature conditions very different from those used in the 

standard parameterisation. Additionally, a limited number of atomic combinations are used to 

create the parameter set, which is not sufficient for many molecular systems of interest.  

A variety of MD softwares are available designed especially for the simulation of biomolecular 

systems such as AMBER [112], GROMACS [113], CHARM [107], NAMD [114], and 
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LAMMPS [115]. Of late the Desmond [116] package has been created for accelerated parallel 

MD simulations. These packages allow the use of existing force fields including variants of 

AMBER and CHARM force fields. 

3.6. Binding Affinities  
 

Chemical entities which bind to proteins are called ligands. Though in some cases ligands form 

irreversible covalent bonds with proteins, most bind via non-covalent bonds in a reversible 

manner. In the latter case, the bound and unbound states of protein and ligand achieve an 

equilibrium, which is expressed as the following chemical reaction, where k1 and k2 are rate 

constants.  

1

2

k

k

A B AB    13 

 

In equilibrium, the concentration of free protein A, free ligand B and the complex AB is 

constant. In the thermodynamic term, reactions are driven by the minimization of a potential, 

the appropriate thermodynamic potentials are determined by the conditions in which the 

reaction occurs. In typical experimental conditions (also known as the NPT ensemble because 

the number of molecules, pressure, and temperature are kept constant) the potential is known 

as the Gibbs free energy denoted by G. 

 

G H TS

A U TS

 

 
   14 

where H is the enthalpy, S the entropy, T the temperature and U is the internal energy of the 

system. There are several formally exact methods (having no empirically fitted parameters), 

for calculation of free energy differences from molecular simulation. Two such methods are 

(a) free energy perturbation (FEP) which is based on exponential averages of the change in the 

potential energy, and (b) thermodynamic integration (TI), which is based on integrating the 

change in energy as one state of the system is steadily changed into another. Free energy is a 

function of the state of the system, and in a close thermodynamic system, the net change is 

zero. FIGURE 13 represents a thermodynamic cycle which could be used to calculate the 
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relative binding affinity (ΔΔGbind) of two different ligands to the same target by following Eq. 

15 

bind B AG G G      15 

 

 

Figure 13: A thermodynamic cycle  

A thermodynamic cycle demonstrating the indirect computation of the relative binding free energy difference. 

 

The use of ab initio methods for calculating free energies is computationally expensive and 

time-consuming. Moreover, achieving convergence is also an issue with such methods. A 

variety of approximate methods has been developed to overcome the shortcomings of the exact 

methods. These methods implement less precise physical models and empirically fitted 

parameters. An example of such faster methods includes molecular docking, linear Interaction 

energy, molecular mechanics Poisson-Boltzmann surface area (MMPBSA) and its simpler 

form using the analytic generalized Born (MMGBSA) method [74].  

 

 

3.7. Molecular Docking  
 

Molecular docking is an important technique in structural molecular biology and computer-

assisted drug design. The main objective of docking is to predict the principal binding mode(s) 

of a ligand with a protein’s 3D structure. The binding modes of a ligand with its target protein 
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can be distinctively defined by its state variables; position (x-, y-, and z-translations), 

orientation (Euler angles, axis-angle, or a quaternion), and, its conformation (the torsion angles 

for rotatable bond) if the ligand is flexible. All docking approaches involve a scoring function 

to rank the several possible binding modes and a search algorithm to efficiently explore the 

ligand’s state variables. The scoring functions can be empirical, force-field based, or 

knowledge-based. A wide variation of ‘scoring functions’ both physical and empirical, are 

available for this purpose, such as AutoDock [117], X-Score [118], DrugScore [119], 

ChemScore [120], GOLD [121], FlexX [122], LigScore [123] and LUDI [124]. Search 

methods can also be classified into local and global. Search space is relatively small, in the 

case of inflexible ligand and/or rigid binding site in the receptor. A quite few machine learning 

algorithms are employed to search the ligands state variables space; for instance, Pattern 

Search[125], Monte Carlo Simulated Annealing (SA)[126], Genetic Algorithm (GA)[127], and 

Lamarckian GA[128]. Docking methods often ignore solvation contributions in the process of 

ligand binding.    

3.8. Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) 
 

The MMPBSA [129, 130] –a continuum/implicit solvation electrostatic method is the most 

rigorous of the approximate methods for binding free energy calculations on a range of 

biological systems. A reasonably detailed physical model and fast computation (compared to 

ab initio methods) have led to its extensive usage. The MMPBSA method involves the 

calculation of absolute binding free energies by computing average free energies of the 

enzyme-inhibitor complex, and the free enzyme, inhibitor separately. These free energy values 

are then used to calculate the change in free energies by the following equation, which is 

average over an ensemble of frames from MD trajectories. 

complex enzyme ligandG G G G       16 

The solvent and counter ions are removed from the MD trajectories and they are swapped by a 

continuum solvent representation in case the MD was performed with explicit solvent model 

and, a thermodynamic cycle is employed. The eventual objective of any free energy 

calculations method is the absolute free energy of binding in a solvent. However, in MD of 

solvated protein-ligand complex, most the energy contributions would come from solvent-

solvent interactions, resulting in variations in total energy of an order of magnitude larger than 

the binding energy. Hence, direct calculations would require a very large number of snapshots 
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to converge. The solution to this employed by MMPBSA is to use the thermodynamic cycle as 

shown in FIGURE 14. Where the binding free energy for system in vacuum is also calculated 

along with solvation energies of the complex, enzyme and ligand and the free energies for 

solvated system is given by: 

 aq vac sol sol sol

b b com enz lig

vac sol

b

G G G G G

G G

      

  
   17 

 

 

Figure 14: Thermodynamic cycle used in MMPBSA 

 The thermodynamic cycle used in to indirectly calculate the binding free energy in MMPBSA. The binding free energy 

changes in vacuo (∆𝐺𝑏
𝑣𝑎𝑐) and the solvation free energies for the complex (∆𝐺𝑐𝑜𝑚𝑝

𝑠𝑜𝑙 ), enzyme (∆𝐺𝑒𝑛𝑧
𝑠𝑜𝑙 ) and ligand (∆𝐺𝑙𝑖𝑔

𝑠𝑜𝑙) 

are calculated and then ∆𝐺𝑏
𝑎𝑞

 computed is computed by equation described above.  

The ∆Gb
vac

 and 
solG components of the binding free energies are calculated independently, 

using different methodologies. The free energies in vacuum ∆Gb
vac

, is calculated using the 

molecular mechanics, which can be decomposed into a sum of electrostatic, van der Waals and 

internal molecular mechanics interactions by Eq.18. 

int

vac MM MM MM

b ele vdWG G G G        18 

The term 
solG  (solvation free energy) represents the free energy change associated with the 

movement of the solute from vacuum into a solvent environment. This can be decomposed into 

contributions from polar and non-polar interactions between the solute and solvent as: 

 
sol sol sol

polar nonpolarG G G        19 
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The polar component of solvation energy is computed by numerically solving either linearized 

Poisson-Boltzmann or Generalized Born (MMGBSA) equation with an implicit solvent 

modeled as a high dielectric constant. The non-polar component is calculated using an 

empirical term related to the solvent accessible surface area.  

3.8.1. Polar solvation energy using Poisson-Boltzmann (PB) equation  

 

To compute the polar solvation energy (
sol

polarG ), it is required to model the electrostatic 

potential surrounding the system in an appropriate solvent. The Poisson-Boltzmann equation 

uses a continuum implicit solvent model with high dielectric constant, aqueous ions as a 

“diffuse charge cloud” and the solute as a collection of fixed point charges implanted in a lower 

dielectric continuum. Although there are many statistical mechanics based derivation of the PB 

equation. It may be derived very easily from Poisson's equation [131, 132] also. Electric 

potential (φ) for a given charge distribution (ρf) can be estimated by solving the Poisson 

equation, where φ(r) at a point r generated by a charge distribution ρf(r) in an environment of 

dielectric coefficient ε(r) (relative to the permittivity of free space, ε0) is given by: 

  . ( ) ( ) 4 ( )r r r         20 

For the simulation of biomolecules, the functional form of ε(r) is subjected to the molecular 

geometry with the biomolecule represented as continuum region of low polarizability 

embedded in a surrounding continuum solvent of higher polarizability. For a biomolecular 

system, usually the dielectric constant of the solute is chosen to be in the range of 1 to 4 and a 

value of 80 is used to represent water.  

 The charge distribution (ρf) comes from solute charge density (ρf(r)), and from the ions 

present in the solvent (c(r)). The ρf(r) can be defined as a set of delta functions centered on each 

solute atom's center and scaled by the atom's charge.  The ion contribution is modeled as a 

continuum with charge distributed according to the Boltzmann distribution. For N ion species 

with charges qn and bulk concentrations of nc
, the ion charge distribution is given by: 
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1
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By combining the Eq.
 . ( ) ( ) 4 ( )r r r      

  20 and 21, we get the following equation: 
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In the case of an electrostatic neutral system, this can be simplified for two ions of equal bulk 

concentration, c , with opposite charges of equal magnitude, q as follows:  

 

    0. ( ) ( ) 8 sinh ( ) 4 ( )fr r qc q r r              23 

 

This equation can be rewritten in a linearized form by expanding the hyperbolic sine function 

as a Taylor series as:  

 
2

0. ( ) ( ) 8 ( ) 4 ( )r r q c r r             24 

Eq. 24 is the linearized Poisson-Boltzmann equation, which can be solved by wide verities of 

numerical methods. In MD packages, designed for simulation of biomolecules such as 

AMBER[112], the finite difference approach (FDM) is the most widely implemented method 

[133, 134]. A FDM comprises of succeeding steps of: (1) mapping atomic charges to the FD 

grid points; (2) assigning non-periodic/periodic boundary conditions; and (3) applying a 

dielectric model to define the high-dielectric (i.e., water) and low-dielectric (i.e., solute 

interior) regions and mapping it to the FD grid edges. These steps permit the partial differential 

equation to be transformed into a linear or nonlinear system. More details could be found in 

section 5.1.1 of AMBER14 manual [135].  

3.9. Overview of molecular modelling studies on HIV-1 RT and NNRTIs 
 

From the ligand-based drug design approach, the technique of QSAR has been used to 

study the relationship between the structure of NNRTIs and its anti-HIV activity [136]. There 

are many QSAR studies on the different chemical scaffold of anti-HIV agents [137, 138]. Such 

efforts have led to the realization of the importance of hydrophobicity, steric, butterfly-like 

structure [139], aryl, hetero-aryl moieties and their structure for the anti-HIV activity [140, 

141]. Nevertheless, most earlier QSAR models for NNRTIs were developed on smaller data 

sets and a single class of compounds [142-145]. There was thus a need for a larger and more 
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diverse dataset for QSAR studies. One of the important objectives of this thesis was to develop 

a robust QSAR model for selected NNRTIs that could predict anti-HIV RT activity. Another 

objective was to identify a potential chemical scaffold for further optimization, the aim being 

to understand the underlying structural changes that could contribute to improving the anti-

HIV activity of the NNRTI.  

 

Regardless of its importance as a drug target, RT has been less widely computationally 

modelled than other HIV targets, especially PR. This is due to the large size of RT (it contains 

approximately 1000+ residues). Several simulation studies conducted have been performed in 

implicit solvents on shorter timescale [68, 146], with restrained atoms [147] or only consider a 

part of the enzyme [148] in order to decrease the computational expense. While it has been 

stated that about one-third of the residues of RT are immovable [147] it is not clear that omitting 

certain part of RT during the simulation does not affect the dynamics of the system. Previous 

studies have dealt with the molecular basis of NNRTI resistance due to K103N mutation in RT 

[68, 146] using 500 ps explicit MD simulation. Rilpivirine is a Di-aryl pyrimidine (DAPY) 

derivative with potent anti-HIV-1 RT activity against both WT and mutant HIV-1 RT (FIGURE 

21). Its ability to reasonably adapt to the K103N mutation in RT is assumed to be due to the 

structural flexibility and the hydrogen bond formed by the linker N atoms [149]. This has 

motivated us to investigate the dynamics of HIV-1 RT sub-domains in WT and K103N mutant, 

complexed with rilpivirine. The details of the MD study are discussed in 3.5.1. Regardless of 

improvement in anti-HIV therapy, HIV remains a challenge due to the rapid onset of mutations 

instigating drug resistance. Despite being the prime target of anti-HIV therapy, RT is 

responsible for emerging resistance to other drugs in the class: first, directly to RT inhibitors 

and/or second, indirectly as a key basis for instigating genetic variations [60]. Residues K101, 

K103, and E138 (p51) are situated at the rim of the NNRTI binding pocket (NNIBP) entrance 

for most NNRTIs. The mutations in NNIBP can lead to loss of aromatic ring stacking 

interactions (Y181C or Y188L), steric hindrance (L100I or G190A/S), and alteration of 

hydrophobic interactions (V106A or V179D). The effects of drug resistance mutations are 

rather severe on the inflexible first-generation NNRTIs, for instance, high level of resistance 

by Y181C to nevirapine. The K103N and E138K mutations are largely linked with treatment 

failure of the efavirenz and rilpivirine, respectively, when combined with tenofovir and 
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emtricitabine [150, 151]. CHAPTER 6 present MD simulation of wild-type (WT) and E138K 

HIV-1 RT in complex with efavirenz (EFV), etravirine (ETR), and rilpivirine (RPV).  
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4.1. Abstract 
 

QSAR modeling and analysis of 289 pyrimidine derivatives with non-nucleoside HIV RT 

inhibitory activity (NNRTI) was carried out in this work.  The Associative Neural Network 

(ASNN) method was applied to develop a Quantitative Structure-Activity relationship (QSAR) 

for anti-HIV RT activity. The calculated models were validated using the bagging approach.  

A consensus model with R2 = 0.87 and RMSE = 0.5 was obtained from 10 individual models. 

Scaffold analysis and molecular docking of the compounds used in the QSAR model identified 

a potential chemical scaffold. The results showed that scaffold-based analysis of the QSAR 

model could be helpful in identifying potent scaffolds for further exploration than analyzing 

the overall model. Matched Molecular Pair analysis (MMPA) was applied in the QSAR model 

to characterize molecular transformations causing a significant change in the anti-HIV activity. 

The linear QSAR model was calculated to explore the structural features important for NNRTI 

activity. The results revealed that the activity of NNRT inhibitors is strongly dependent on their 

aromaticity and structural flexibility. The scaffold-based analysis of QSAR models with 

molecular docking and MMPA was found to be helpful in characterizing potential scaffolds 

for anti-HIV RT derivatives. The outcome of this study provides a deeper insight on the 

computer aided scaffold-based design of novel molecules with HIV RT activities. Moreover, 

we clearly showed that the model’s failure to correctly predict new chemical series could be 

due to the limitation of its applicability domain (AD). Redevelopment of models using new 

measurements can dramatically increase their ADs and performance. 

Keywords: 

Non-nucleoside Reverse Transcriptase (NNRT) Pyrimidine derivatives; HIV Reverse 

transcriptase (HIV-RT); Quantitative Structure-Activity relationship (QSAR); Matched 

Molecular Pair analysis (MMPA); Molecular Docking.   
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4.2. Introduction 
 

According to a recent WHO estimate, 35.3 million people were living with HIV/AIDS 

worldwide in 2012 [135], with a significant number of these infections being resistant to 

antiretroviral therapies. HIV utilizes Reverse Transcriptase (RT), an enzyme that makes copies 

of cDNA from RNA, a process called reverse transcription. This makes RT an attractive target 

for anti-retroviral drugs like Non-nucleoside Reverse Transcriptase Inhibitors (NNRTIs) [6].   

The higher rate of mutation in HIV strains, and the subsequent development of resistance to 

the NNRTIs is a major issue in managing HIV infection.  This highlights the need for rapid 

and rational development of NNRTIs.  Pyrimidine derivatives were synthesized for decades 

and have been actively pursued as NNRTIs [5]. Two main series of pyrimidine derivatives are 

DABO (Dihydro-alkoxy-benzyl-oxopyrimidine) and DAPY (Di aryl pyrimidine) [6]. Owing 

to NNRTIs importance in targeting HIV RT, QSAR studies have been used to understand the 

relationship between its structure and anti-HIV RT activity.  

Quantitative Structure-Activity relationship (QSAR) is the mathematical modeling of chemical 

structures of compounds and their relationship with biological activity, and is actively used in 

drug design [78, 79]. Knowledge of the relationship between structural properties of chemical 

compounds and their biological activity is crucial in optimizing lead molecules. The 

construction of QSAR models typically consists of two main steps: (i) calculation and 

representation of structural features (molecular descriptors) of the selected compounds; (ii) 

multivariate analysis for correlating molecular descriptors with observed activities (biological, 

physico-chemical and ADMET properties). Numerous methods, ranging from simple linear 

regression to complex machine learning algorithms are applied to explore structure-activity 

relationships. The linear regression models in general allow a relatively straightforward 

interpretation in terms of linear regression coefficients, provided that descriptors used in the 

equation are not correlated. However, the models obtained by machine learning methods, such 

as Neural Network and Support Vector Machine, are more difficult to interpret, due to the non-

linear nature of the algorithms. 

A recently developed Matched Molecular Pair Analysis (MMPA) approach has the capability 

to address the ‘black box’ nature of QSAR models [152]. Matched Molecular pair (MMP) is 

defined as a pair of molecules that differ by a minor structural change at a single point [153]. 

An MMP associated with a significant change in activity is known as ‘activity cliff’ and is of 
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particular interest. Due to its nature and the way it uses structural information, MMPA can be 

utilized as a complementary method to QSAR modeling. 

 

Molecular docking techniques have also been widely used to discover new small molecules 

targeting bacterial/viral proteins [154, 155]. Docking is often used to predict the suitable pose 

and affinity of drug molecules in the binding pocket of protein targets to rationalize the active 

and inactive lead compounds.  

Earlier QSAR models for NNRTIs were developed on smaller data sets and a single class of 

compounds [142-145]. There was thus a need for a larger and more diverse dataset for QSAR 

studies. An important objective was to develop a robust QSAR model for selected NNRTIs 

that could predict anti-HIV RT activity. Another objective was to identify a potential chemical 

scaffold for further optimization, the aim being to understand the underlying structural changes 

that could contribute to improving the anti-HIV activity of the NNRTI. QSAR modeling was 

combined with molecular docking studies and MMPA on the selected NNRTIs to provide a 

deeper insight into the computer-aided design of novel molecules against HIV RT.  

 

4.3. Methods 

4.3.1. Dataset 
 

Publicly available NNRTIs with a pyrimidine ring in their structure shown to possess anti-

HIVRT activity were obtained from the ChemDB database [47] and published articles [156-

171].  To maintain homogeneity in the dataset, only molecules with reported IC50 values 

(against HIV RT) were considered.  Online Chemical Modeling Environment (OCHEM) 

software was used to develop the QSAR model [82]. 

It is argued that activity data originating from different sources should not be mixed as these 

measurements are highly dependent on experimental conditions, therefore the publications 

used in this work reported the Anti HIV-RT assay using the same protocol as described in 

Tramontano [35] and Balzarini [172, 173], with the experimental conditions in all the articles 

being comparable. It has also been shown that collecting the IC50 data from different sources 

adds only a moderate amount of noise [174]. Combining data from different sources, after 

careful consideration of experimental conditions, therefore appears to be a valid approach. 
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Duplicate molecules were removed from the dataset, with 289 molecules being used to develop 

the QSAR model. An additional 47 structures were obtained [175-177] and used as external 

validation set. 

4.3.2. QSAR models  
 

QSAR models for anti-HIV RT activity were developed using ASNN (Associative Neural 

Networks). ASNN is an extension of Artificial Neural Network (ANN), in which multiple 

neuronal responses are combined in a single neuron (network ensemble). In ASNN, an 

ensemble of feed forward neural network is combined with kNN. It corrects the bias in the 

ensemble by utilizing the correlation between ensemble responses as a measure of distance 

[178, 179]. The best models with ASNN were obtained using Supersab [180] training method 

with iterations = 5000, neurons = 9 and a set of 64 ensembles.  We also have used kNN (k 

nearest neighbour), Neural Network and the SVM algorithm to compare with the employed 

approach. Molecular descriptors such as Dragon, CDK, AlogP and Estate, Adriana, Chemaxon, 

ISIDA Fragments, GS Fragments, Inductive descriptors, Spectrophores, Mera, Mersy and 

QNPR were utilized in this work, with details about the descriptors found elsewhere [181]. 

Before calculating the descriptors, 3D structures of molecules were optimized by Corina [182].  

Descriptors that had less than two unique values, large absolute values, less than 0.01 co-

variance, and infinite values were excluded. Unsupervised forward selection [183] and simple 

pairwise correlation (descriptors having correlation coefficient r < 0.95 with any other 

descriptors are removed) methods were used to filter descriptors. Bagging (Bootstrap 

aggregating) with 64 models (“bags”) and 5-fold cross validation technique were used for 

model assessment. Better results were obtained with bagging, hence the models with this 

technique were retained. Bagging is a meta-learning method that involves creation of an 

ensemble of models (64 in this case) based on random training sets [184]. These training sets 

are randomly drawn from the original dataset by sampling with replacement. The “out-of-the-

bag” samples, which are not selected in the training sets (approximately 33% of the original 

dataset size), are used for estimating the prediction power of the model. The bagging is a useful 

approach for avoiding overfitting since estimation of the model’s performance is done using 

“out-of-the-bag” samples, which do not participate in the model development. Due to sampling 

with replacement, “out-of-the-bag” samples span all the original training set of different bags. 

As compared to the methods where a single training and test set is involved, bagging estimates 



Chapter 4: QSAR Modeling 

 

72 

 

the prediction for the whole original set. The final ensemble model was the simple average of 

the individual bagging models.  

 

IC50 values of 17 molecules in the final dataset were reported in ranges, for example N-(2-

chloro-4-sulfamoylphenyl)-3-[[4-(4-cyano-2,6-dimethylphenoxy)pyrimidin-2-yl] amino] 

propanamide is reported to have a IC50 value of >10. Such records can be handled effectively 

by the OCHEM. There are two alternatives for such cases, one is to use the boundary values 

and another is to handle them as ranges, the latter more informative option being used in the 

present study. 

 

4.3.3. Scaffold analysis 
 

To identify the scaffold contributing to anti-HIV activity, the data were divided into active and 

inactive molecules. The dataset was discretized using an average activity value over the entire 

dataset, i.e. -6.7 log (mol L-1) as the threshold between active and inactive molecules. 

Molecules having a value between -6.7 to -4 log (mol L-1) were classified as inactive, and 

molecules with values between -6.7 to -9.3 log (mol L-1) were categorized as active. 

These active and inactive sets of molecules were analyzed using the SetCompare tool [185], 

which identifies whether the probability of a particular scaffold overrepresented in one of the 

two sets is by chance or not.  It uses a hyper-geometric distribution for the analysis, which 

applies to sampling without replacement from a finite population whose components can be 

grouped into two mutually exclusive categories. Scaffold hunter descriptors [22] were chosen 

for comparison of the active and inactive sets. 

 

4.3.4. Molecular Docking  
 

Molecular docking simulation of all the 289 molecules in the binding site of HIV RT was 

performed to assess how well different scaffolds performed in the QSAR model.  The crystal 

structure of HIV-1 reverse transcriptase co-crystallized with the MKC422 ligand (PBD: 1RT1, 

resolution: 2.5 Å, R value: 0.197) [186] was retrieved from the Protein Data Bank (PDB) [187] 

and used for docking. To validate the docking protocol, the ligand (MKC422) was removed 
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from the experimentally reported HIV1 RT- MKC422 complex (1RT1) and re-docked into the 

binding site of HIV -1 reverse transcriptase. All the selected molecules were geometry 

optimized by Guassian09 software [188] using the PM6 semi-empirical method [189]. 

Gasteiger charges were added and nonpolar hydrogen atoms were merged to carbon atoms in 

all the ligand structures. Selected molecules were docked into the NNRTI binding pocket in 

the HIV-1 reverse transcriptase (by defining the grid box with spacing of 1Å and size of 

24 ×24 × 24 pointing in x, y and z directions around the MKC422 ligand present in the PDB 

crystal). Water molecules were removed and polar hydrogen was added to the crystal structure 

of the receptor protein. Molecular docking was performed by Raccoon AutoDock [190] using 

AutoDockTools (ADT)[191] and AutoDockVina [117] with default docking parameters. The 

Lamarckian Genetic algorithm [128] was used as the search algorithm with default parameter 

values. For different ligands, the docked confirmation with the most negative binding energy 

values was undertaken for further analysis. 

 

4.3.5. Matched Molecular Pair Analysis (MMPA) 
 

The basis of MMPA is the identification of pairs of molecules bearing a specific structural 

relationship to each other, with each molecular pair being associated with a chemical 

transformation, where a minor structural modification is seen between them. MMPs were 

identified, as described by Hussain et.al [192], where transformations with p value <0.01 were 

identified as significant. To address where a transformation passes the p value filtered by mere 

chance, the Holm-Bonferroni method [193] was applied. To avoid very dissimilar structures in 

Matched Pairs, only molecular pairs with a minimal Tanimoto similarity index of 25 were 

retained.  

 

4.4. Results and discussion 

4.4.1. QSAR models  
 

QSAR models were calculated by ASNN, kNN, Neural Network and SVM with different 

molecular descriptors (TABLE 3). Models with the ASNN method had the best quality and 

hence were used for further analysis. Studies have shown that the consensus model calculated 

out of individual models performed best [185, 194, 195]. An average consensus model was 
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built using 10 QSAR models with the exception of that with spectrophore descriptors, due to 

its low performance.  The consensus model with R2 = 0.86 ± 0.02, Q2 = 0.87 ± 0.02 and RMSE 

= 0.5 ± 0.03 was obtained. A plot between the measured and predicted activity values of the 

consensus model is shown in FIGURE 15, suggesting a robust and reliable model. This model 

was chosen for further analysis after removal of the outliers (discussed later) with R2 = 0.87 ± 

0.02, Q2 = 0.87 ± 0.02 and RMSE = 0.48 ± 0.03. Additionally, a QSAR model based on all 

descriptors was calculated with R2 = 0.86 ± 0.02, Q2 = 0.87 ± 0.02 and RMSE = 0.49 ± 0.04. 

It had a similar performance to the consensus model. We decided to use the consensus model, 

which also estimated its applicability domain.  

 

 

Figure 15: Consensus QSAR Model. 

Plot of measured versus predicted IC50 values in logarithmic scale of the consensus model (R2 = 0.87). The Consensus model 
line is plotted in black color. Measured IC50 are plotted on the X axis, and predicted IC50 values on the y axis.  Most of the 

data points lie close to the model line 

 

The applicability domain (AD) of a QSAR model is the chemical structure subspace in which 

it makes predictions with a given reliability [196]. AD is required as the QSAR model may 

have different accuracies of predictions for compounds based on their similarity to the training 
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set molecules, i.e. distance to model (DM). In the current study, the CONSENSUS-STD 

(standard deviation of predictions of the ensemble of models in the consensus model) was used 

as a measure of DM. This DM provided the best separation of molecules with low and high 

accuracy of predictions in several benchmarking studies [197, 198]. A threshold value of 95% 

of compounds from the training set was used to determine the qualitative ADs of models. It is 

assumed that 5% of compounds outside the AD have little effect on the prediction confidence 

[194].  A Williams’s plot of the consensus model with CONSENSUS-STD as a distance to 

model is shown in FIGURE 16, and the AD defined above was used to warn users about 

unreliable predictions. 

 

Figure 16: Applicability domain.  

AD Plot with CONSENSUS-STD as a measure of distance to model (DM). Threshold value of 95% of compounds from the 
training set is selected (vertical line). 

 

4.4.2. Model validation 

 

The external validation set was used to evaluate the consensus QSAR model. The model 

calculated a poor prediction for the validation set (R2 = 0.16, RMSE = 2 ± 0.1), as most of the 

samples were outside the AD of the model (see FIGURE 16). Another validation set was 

obtained from random splitting of a combined set of original training and validation sets.  The 

size of the validation set was kept at 20% of the combined dataset. A new consensus models 

was developed using the same workflow as the model based on the initial training set. This 
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model had comparable performance for the training (R2 = 0.85 ± 0.02, Q2 = 0.84 ± 0.02, RMSE 

= 0.51 ± 0.03) and the validation set (R2 = 0.83 ± 0.04, Q2 = 0.82 ± 0.04, RMSE = 0.61 ± 0.06).  

 

The extrapolation is a difficult problem for the QSAR approaches. The prediction using QSAR 

model is valid only if the molecules being predicted are within its applicability. Because the 

original consensus model did not cover the chemical compounds from the new series (see 

FIGURE 16), it failed to predict their activity. The extension of the chemical space by including 

new molecules extended its AD as is shown by Williams plot with CONSENSUS-STD 

(FIGURE 17), where most of the validation set compounds are within the model’s AD. It 

explains the aforementioned observation. The extension of model’s AD made the correct 

prediction possible for these series of compounds. This is an important result, which 

exemplifies how QSAR models can fail for new data due to limitations of their ADs. It also 

clearly demonstrates that the same models re-developed with new measurements can become 

an important tool to predict activities of compounds within these series. 

 

Figure 17: Applicability domain.  

Plot with CONSENSUS-STD as a measure of distance to model (DM) for new QSAR. Threshold value of 95% of compounds 
from the training set is selected (vertical line). 
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Table 3: Comparison of QSAR models built using different algorithms and sets of descriptors. 

 Pearson correlation coefficient (R2) is reported for each model 

Descriptors ASNN kNN SVM ANN 

Dragon6 0.86 0.86 0.13 0.86 

Fragmentor 0.85 0.77 0.86 0.84 

CDK 0.83 0.83 0.06 0.83 

ALogPS, OEstate 0.83 0.81 0.83 0.82 

GSFrag 0.84 0.8 0.08 0.83 

Mera, Mersy 0.80 0.83 0.18 0.79 

ChemaxonDescriptors 0.81 0.77 0.09 0.79 

InductiveDescriptors 0.80 0.78 0.64 0.77 

Adriana 0.83 0.84 0.18 0.81 

Spectrophores 0.71 0.73 0.02 0.66 

QNPR 0.84 0.82 0.87 0.83 

Average Consensus 

Model 
0.86 

   

 

4.4.3. QSAR model analysis 
 

The consensus QSAR model was analyzed for individual chemical scaffolds in the data set. A 

combinatorial approach was taken to interpret the QSAR model in terms of chemical scaffold, 

molecular docking and MMP analysis. The objective was to identify interesting scaffolds with 

better QSAR performance and a large range of activity values, thus allowing their application 

in the design of new molecules. General chemical scaffolds of the molecules from the training 

set are shown in FIGURE 18 along with Q2 (coefficient of determination) values, number of 

molecules (N), mean of IC50 values (µM) and standard deviations (SD) calculated for each 

scaffold. Eq. 25 was used to calculate the coefficient of determination (Q2) value. The higher 

the Q2 value, the better the model at explaining the variation of data. 
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Where yi= ith  measured IC50,yi'= ith predicted activity, n= population size and Y= mean of measured 

IC50 
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The chemical scaffolds A and C shown in FIGURE 18 have the highest Q2 values 0.76 and 

0.80, respectively. It should be mentioned that scaffold A is a subset of scaffold C, with the 

analysis concentrating on scaffold C as the larger one. Scaffold C covers a large range of 

activity values as depicted by mean IC50 values and SD. The Q2 value of the consensus model 

was 0.87 ± 0.02, which includes scaffold A to G in its training set. However, individually, some 

of these scaffolds had a lower Q2 or even negative Q2 values. For scaffolds with low or 

negative Q2 values (e.g., B, D, E, F and G), the model differentiated between different scaffolds 

(i.e., to some extent classified them into active and inactive classes) rather than explaining 

changes in the activities of molecules due to various substituents. The model may not be able 

to predict changes in activities of new compounds based on such scaffolds. The high accuracy 

of the QSAR model for molecules with scaffold C suggests that it had properly learnt the 

chemical features responsible for the anti-HIV activity and thus may accurately predict new 

molecules. The analysis in the next sections provides a deeper insight into this scaffold. 
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Figure 18: Scaffold used in the QSAR model. 

 Scaffold used in the QSAR model development and their model Coefficient of determination (Q2). N= number of molecules 
representing the particular scaffold, Mean = average IC50 values in µM, SD = standard deviation of IC50 values.  (A) Q2 = 

0.76, N= 15, Mean = 1.5 µM, SD = 1.6 (B) Q2 = 0.4, N= 30, Mean IC50 = 0.003 µM, SD= 0.005(C) Q2 = 0.80, N= 142, Mean = 
8.46 µM, SD= 17.06 (D) Q2 = 0.41, N= 23, Mean = 6.3 µM, SD = 15.52 (E) Q2 = 0.27, N= 53, Mean = 0.1 µM, SD= 0.16 (F) Q2 = 

0.33, N= 9, Mean = 24.3 µM, SD= 16.8 (G) Q2 = -0.60, N= 14, Mean 2.2 µM, SD= 4.2 

 

 

 



Chapter 4: QSAR Modeling 

 

80 

 

4.4.4. Scaffold analysis 
 

The outcome of the Set Compare task using scaffold hunter descriptors is summarized in 

TABLE 4. For simplicity and to differentiate these scaffolds from those in FIGURE 18, we 

labeled them S1 to S4. Scaffold C, with the highest Q2 values in the QSAR model, has the same 

general structure to that of S1 and S2. It should also be noted that S2 is a subpart of S1, with 

both these scaffolds being overrepresented in the set of inactive compounds (55.3%) compared 

to the active set (14.1%). However, entire representative molecules of the particular scaffold 

in the inactive set contain an attached S atom at position 2 of the oxopyrimidine ring. 

Furthermore, all of the S atoms in the inactive set have aromatic substitution.  If the S atom is 

present at this position in the active set, it either has an aliphatic chain or aliphatic cyclic 

substitution, which is further corroborated by the overrepresentation of S3 in the Inactive set. 

Scaffold C has the highest Q2 value in the consensus QSAR model. The model correctly 

captured the structural features of the scaffold C required for activity, suggesting that this 

scaffold can potentially be used to design novel anti-HIV molecules with improved activity.  

 

Table 4: Chemical scaffolds overrepresented in the datasets. 

Appearance counts as well as percentage of representation are listed along with the p-value of the respective scaffold. 

 

Scaffold 

No. 

Scaffold 

Active set 

(99 

molecules) 

Inactive 

set 

(199 

molecules) 

P-

value 

 

S1 

 

 

 

14  

(14.1%) 

 

105 

(55.3%) 

 

 

-2.7E-

12 

HN

N

O
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S2 

 

 

17 

(17.2%) 

 

113  

(59.5%) 

 

 

-

1.75E-

12 

 

S3 

 

 

 

0 (0.0%) 

 

28  

(14.7%) 

 

 

-

3.78E-

6 

S4 

 

33  

(33.3%) 

1 

(0.5%) 

 

1.8E-

16 

 

 

In addition, S4 is a part of scaffold E that is represented in 33.3% of active molecules compared to 0.5 

% of the inactive set. Nevertheless, the contribution of S4 in the active set of molecules is not well 

captured by the QSAR model as depicted by Q2 = 0.27 of scaffold E.  This means that the model 

predicted all molecules with this scaffold as active ones and was unable to identify structural changes 

within this scaffold that contribute to a change in the activity of the molecules. The predictions for 

such scaffolds would apparently not be promising to identify new potent molecules. 
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4.4.5. Interpretable QSAR model 
 

An interpretable linear QSAR model was built to understand the structural features contributing 

to the anti-HIV activity. Topological, Geometrical and Constitutional descriptors were 

calculated using Dragon [80], and the model was built using multiple linear regression (MLR), 

which  can be described by Equation 2. Although its corresponding R2 (0.69 ± 0.03) was less 

than the consensus model (by about 17%), the structural features affecting the activity could 

be explained easily with this model. 

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑌 =  6.29 +  1.27 ∗ 𝑛𝑁 −  1.13 ∗ 𝑅𝐵𝑁 +  1.12 ∗ 𝑅𝐵𝐹 +  0.915 ∗ 𝐴𝑅𝑂𝑀 −  0.645 ∗

𝑛𝐷𝐵 −  0.54 ∗ 𝐻𝑁𝑎𝑟 +  0.486 ∗ 𝐶𝑀𝐵𝐿 +  0.46 ∗ 𝑛𝐶𝑠𝑝3 +  0.353 ∗ 𝐷𝐼𝑆𝑃𝑠 −  0.293 ∗ 𝐿𝑂𝐶 +

 0.258 ∗ 𝑃𝑊4 −  0.225 ∗ 𝐷𝐼𝑆𝑃𝑒 −  0.209 ∗ 𝐷𝐼𝑆𝑃𝑖 −  0.194 ∗ 𝐵𝐿𝐼 −  0.144 ∗ 𝑆𝑃𝐻 +  0.138 ∗

𝑀𝐴𝑋𝐷𝑁 +  0.136 ∗ 𝐴𝑀𝑊 −  0.135 ∗ 𝐻𝑂𝑀𝐴      (2) 

 

R2= 0.69 ± 0.03 Q2 = 0.68 ± 0.03 RMSE = 0.76 ± 0.03 

 

Details about the descriptors in Equation 2 are provided in TABLE 5.  

NNRTI binds inside the hydrophobic pocket of RT, known as the Non-nucleoside inhibitor 

binding pocket (NNIBP). The NNIBP is flexible and does not exist in the absence of a bound 

ligand. Conformational flexibility of the inhibitor plays a crucial role in its adaptation in the 

binding pocket. It has been shown that a flexible ligand can adapt very well to the changes in 

the binding pocket, with most of the NNRTIs either taking the “horseshoe” or “butterfly” shape 

[199]. 

The main contributing descriptor to the NNRTIs activity is the number of nitrogen atoms, 

which can form hydrogen bonds with oxygen in the active residues of the binding pocket [199]. 

The number of rotatable bonds also seem to be an essential factor in activity. An increase in 

the number of double bonds (nDB) has a negative impact on the activity. Higher number of 

double bonds are correlated with lower fraction of rotatable bonds, which can decrease the 

molecule`s flexibility.        

Descriptors such as AROM (aromaticity index), BLI (Kier benzene-likeliness index) and 

HOMA (Harmonic Oscillator Model of Aromaticity index) represent the aromaticity of the 

molecule. In Equation 2, AROM has the highest positive impact amongst all aromaticity 

indices, whereas others have a slight negative impact. Overall aromaticity can be considered 
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favorable for activity.  The interaction between two aromatic rings is known as π-π stacking. 

The aromatic rings in the NNRTI are known to make a π−π stacking interaction with Y181 and 

Y188 of the target enzyme [199]. 

Descriptors such as HNar (Narumi harmonic topological index) and LOC (lopping centric 

index) are indices for branching in the molecule. In Equation 2, the HNar and LOC have a 

negative sign, which implies that more branching in the NNRTI adversely affects the activity 

by reducing the hydrophobic interaction between the binding pocket residues and ligand 

through steric hindrance.  

In chemical graph theory, the molecules are represented as graphs, where vertices correspond 

to the atoms and the edges to the chemical bonds. This representation is used in calculating 

various descriptors like Randic shape index that range from linear molecules to completely 

connected graph. The Randic shape index has a positive effect on the activity, which suggests 

that a molecule with more linear shape will have lower anti-HIV activity. The number of sp3 

hybridized C atoms (descriptor nCsp3) favors the anti-RT activity, which is consistent with the 

earlier discussion on the favorable role of two sp3 hybridized carbon atoms in the anti-retroviral 

activity of the triazolo[4,5-g]quinoline scaffold [200].  

Spherocity appeared in the QSAR model with the index SPH, and is an unfavorable feature for 

biological activity. The SPH values range from 0 for flat molecules (such as benzene) to 1 for 

total spherical molecules. A possible explanation might be that NNRTI takes a non-flat shape 

inside the NNIBP and relatively more spherical structures might move away from the 

energetically favorable shape.  

MAXDN (maximal electrotopological negative variation, an index of nucleophilicity) has a 

positive correlation with the activity, and indicates that polar interactions between the protein 

and the NNRTIs could stabilize the ligand inside the active binding pocket. Other important 

molecular properties for anti-HIV activity are molecular shape and charge distribution (DISPs, 

DISPe and DISPi), and molecular weight. 
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Table 5: List of molecular descriptors from the linear QSAR model 

Sr. No Symbol Descriptor Explanation 

1.  nN Constitutional Number of Nitrogen atoms 

2.  RBN Constitutional Number of rotatable bonds 

3.  RBF Constitutional Rotatable bond fraction 

4.  AROM Geometrical Aromaticity index 

5.  nDB Constitutional Number of double bonds 

6.  HNar Topological 
Narumi harmonic topological index that relates to 

molecular branching 

7.  CMBL Geometrical Conjugated maximum bond length 

8.  nCsp3 Constitutional Number of sp3 hybridized Carbon atoms 

9.  DISPs Geometrical Displacement value / weighted by I-state 

10.  LOC Topological 

Lopping centric index provides the level of branching 

in the molecule. The higher the value, the more 

branched the molecule. 

11.  PW4 Topological 
Randic shape index. Range from linear molecules to 

completely connected graph 

12.  DISPe Geometrical 
Displacement value / weighted by atomic Sanderson 

electronegativities 

13.  DISPi Geometrical Displacement value / weighted by ionization potential 

14.  BLI Topological 
Kier benzene-likeliness index.  A measure of molecular 

aromaticity 

15.  SPH Geometrical 

Spherosity index varies from zero for flat molecules, 

such as benzene, to unity for totally spherical 

molecules 

16.  MAXDN Topological 
Maximal electrotopological negative variation related to 

the nucleophilicity of the molecule 

17.  AMW Constitutional Average molecular weight 

18.  HOMA Geometrical Harmonic Oscillator Model of Aromaticity index 

 

 

 

4.4.6. Molecular docking  

 

All the molecules in the training set were docked inside the NNRTI binding pocket of HIV-

RT. Due to the reasonable structural similarity between the MKC422 and selected NNRTIs, 

PDB 1RT1 (MKC422 co-crystallized with HIV RT) was chosen for the current study. The 

superimposed structure of docked MKC422 and PDB crystal MKC422 has the RMSD of 

0.064Å (Supplementary FIGURE S1). The low RMSD value validate the docking procedure 

adopted in this study. MKC422 binds in the same binding site with very similar orientation as 

that of the crystal MKC422. The interaction between the NNRTI molecule and the residue of 

binding pocket is demonstrated in FIGURE 19. 
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Figure 19: Interaction between NNRTI molecule (blue) and residue of binding pocket.  

Hydrogen bonds are shown with green dotted lines. Red semicircles represents the hydrophobic interaction. 

 

Average docked binding energies and Q2 values of the entire chemical scaffolds from the 

training set and outliers are given in TABLE 6. Of note is that all the scaffolds with lower Q2 

values (B, D, E, F and G) showed higher (less negative) average binding energies (higher than 

the MKC422), whereas scaffold C in the QSAR model showed lower (more negative) average 

binding energy. The reasonably good docked binding energy of scaffold C (-10.28 Kcal/mol) 

could be attributed to the possibility of hydrophobic interaction, as well as to the hydrogen 

bond formation between ligand and the active residues of RT (FIGURE 19). The significance 

of hydrophobic interactions, - stacking (between aromatic rings) and hydrogen bonding 

(between N of NNRTI and O of active residue) in anti-RT activity was also confirmed in the 

linear QSAR model (Equation 2).  
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Table 6: Docked binding energy.  

Average docked binding energies (Kcal/mol) of the selected NNRTIs inside the binding pocket of the HIV RT enzyme. (A) 
Average docked binding energies of scaffolds and model Q2 values. (B) QSAR model’s outlier molecules. 

(A) 

 

Scaffolds 

Average docked 

binding energy   

(Kcal mol-1) 

Q2 N Chemical structure 

MKC 422 -10.2   

 

B -9.9 0.41 30 

 

C -10.28 0.80 142 

ON
H

X

N

1

2

X

-S-
-N-

 

D -8.4 0.41 23 

 

HN

N

O

O

O

Y

N
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E -8.67 0.27 53 

O N
H
N

NN

N

 

F -10.12 0.16 09 

SN

O

NH

 

G -8.65 -0.6 14 

 

(B) 

Outlier 
Docked Binding 

Energy (kcal mol-1) 

IC50 

(µM) 
Structure Scaffold 

O1 -7.9 0.41 

O

SN

I

O

NH

 

C 

N

N

S
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O2 -7.8 9.82 

N

N

Br

N

S

O Cl

Cl  

D 

O3 -7.0 5.25 
O

O

S

N

NH2

ClN

 

G 

 

 

4.4.7. Analysis of outliers based on QSAR and docking 

 

The detection and interpretation of outliers in the QSAR model is crucial to a satisfactory fit 

and predicting ability of the QSAR model [165]. The reason for a compound to be an outlier 

could be referred to as different Mechanisms Of Action (MOA), different modes of interaction 

with target molecules [201], conformational flexibility of the receptor binding site [202] and 

unusual binding mode [203]. Due to the noise in the data and experimental measurement errors, 

a molecule may also be an outlier.  In general, one should not exclude any molecule merely 

because it has a high error in the QSAR model. Regarding the analysis of molecules with large 

prediction errors in the consensus model, in a few cases high docked binding energies were 

observed. Indeed, three out of 11 molecules with deviations between predicted and calculated 

values more than 1 log unit were also included in the outliers of the docking procedure. These 

molecules had at least two units higher docking scores than the reference MKC422 (-10.2 Kcal 

mol-1), which might be attributed to the different MOAs of the outlying molecules. Excluding 

these three outliers improved the consensus model R2 from 0.86 to 0.87.  
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4.4.8. MMP analysis  
 

The consensus QSAR model was analyzed for matched molecular pairs and ‘activity cliff’. 

Identified molecular transformations, which have the mean activity change of 0.7 log units or 

more, in addition to their core structure, are reported in TABLE 7. It is evident that substitution 

with fluorine or methyl in the meta position had a positive effect on anti-HIV activity. TR4 is 

basically the introduction of two sp3 hybridized carbon atoms at the meta position of aromatic 

rings. The Linear QSAR model has also shown the positive effect of sp3 hybridized carbon on 

the anti-HIV activity. 

 

Table 7: The effect of transformation on anti-HIV activity (–log (mol L-1)). 

Point of transformation is encircled in grey (a) Mean activity change within all the pairs of transformation (c) Number of 
matched pairs in the particular transformation, (d) Ratio of compound increasing and decreasing the activity value. 

 

Core molecule Transformation Δ IC50
a (µM) 

# matched 

Pair c 
Inc/Dec d 

 

 

 

 

TR1 

 

 

-0.9 ± 0.54  

 

12 0/12 

TR2 

 

1.5 ± 0.24 12 12/0 

TR3 

 

1.6 ± 0.29 12 12/0 

TR4 

 

0.74 ± 0.51 15 15/1 
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4.5. Conclusions 

 

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) were collected from the literature.  

Several QSAR models were built using ASNN algorithms and various molecular descriptors. 

For further application of different representations of chemical structures, a consensus model 

was obtained with a R2 value of 0.87 and analyzed for the scaffold’s performance. Some 

scaffolds had a lower coefficient of determination value. Molecular docking was helpful in 

identifying potential chemical scaffolds. Identifying outliers based on prediction error and 

molecular docking improved the QSAR model by excluding molecules with different modes 

of action. The linear QSAR model highlights the structural features affecting anti-HIV activity. 

The QSAR model was analyzed using MMP to understand structural features, which were 

correctly learned by the model. MMPA was shown as a powerful method for addressing the 

‘black box’ nature of QSAR, and enable medicinal chemists to choose molecules for further 

optimization. Significant transformations in the backbone structure were identified using this 

method.  

 

The current work serves as a computer-aided strategy for further optimization of a lead 

molecule. It is also speculated that the scaffolds with high Q2 in the QSAR model have 

significant structural features correctly learnt by the model. Thus, predicting structures of 

potential compounds based on these scaffolds would be accurate. However, the model statistics 

for predicting new molecules should not be the only approach considered.  The scaffold-based 

analysis is a better approach to identify chemical scaffolds for further optimization. 

 

To the best of our knowledge, this is one of the first QSAR studies on diverse anti-HIV 

pyrimidine derivatives, where the combination of QSAR, molecular docking and MMP were 

applied to understand the structure activity relationship. We have shown how the 

complementary nature of these approaches help to better understand and interpret biological 

data and propose a design of new inhibitors. Finally, the used data, the consensus model and 

its sub-models are published on the OCHEM web site http://ochem.eu/article/93085 and are 

http://ochem.eu/article/93085
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freely accessible for interested users. Their public availability will contribute to the widespread 

use of the computational chemistry tools on the Web[204]. 

Last, but not least we exemplified the problem with extrapolation of QSAR models for new 

chemical series. Despite the failure of original consensus model to correctly predict new data, 

the re-calculated model provided good performance for new compounds from the same series. 

The Williams plots clearly showed that the reason of the initial model’s failure, and the success 

of the re-developed model was due to the change in the AD of the new model. The AD of re-

constructed model covered the compounds from new chemical series and thus could correctly 

predict their inhibitory activities (IC50). 
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Figure S1: Superimposition of docked MKC422 (Coloured Blue) and MKC422 from experimental HIV1 RT- MKC422 

complex (PDB: 1RT1) (Coloured Red).  
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simulations and dynamic pharmacophore analysis 
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5.1. Abstract 
 

Regardless of advances in anti-HIV therapy, HIV infection remains an immense challenge due 

to the rapid onset of mutation instigating drug resistance. Rilpivirine is a second-generation Di-

aryl pyrimidine (DAPY) derivative, known to effectively inhibit wild-type (WT) as well as 

various mutant HIV-1 reverse transcriptase (RT). In this study, a cumulative 240 ns of 

molecular dynamic (MD) simulations of WT HIV-1 RT and its corresponding K103N mutated 

form, complexed with rilpivirine, were performed in solution. Conformational analysis of the 

NNRTI inside the binding pocket (NNIBP) revealed the ability of rilpivirine to adopt different 

conformations, which is possibly the reason for its reasonable activity against mutant HIV-1 

RT. Binding free energy (MM-PB/GB SA) calculations of rilpivirine with mutant HIV-1 RT 

agree with experimental data. The dynamics of interaction patterns were investigated based on 

the MD simulations using dynophores, a novel approach for MD-based ligand-target 

interaction mapping. The results from this interaction profile analysis suggest an alternate 

interaction between the linker N atom of rilpivirine and Lys 101, potentially providing the 
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stability for ligand binding. PCA analysis and per residue fluctuation has highlighted the 

significant role of flexible thumb and finger sub-domains of RT in its biological activity. This 

study investigated the underlying reason for rilpivirine’s improved inhibitory profile against 

mutant RT, which could be helpful to understand the molecular basis of HIV-1 RT drug 

resistance and design novel NNRTIs with improved drug resistance tolerance.   

     

Keywords: HIV-1 RT, Drug resistance, NNRTI, MD, Molecular dynamics, PCA, Dynophore, 

MMPBSA, Binding free energy.   

 

5.2. Introduction 

 Sub-Saharan Africa has 66% of the global population of HIV-infected people, with 

South Africa having the highest incidence, with approximately 5.6 million people living with 

HIV [1, 18]. The country’s extensive rollout of antiretroviral therapy (ART) has resulted in the 

disease no longer being a death sentence, with a decrease in mortality rates over the last decade 

[205, 206]. However, drug resistance to ART has become a serious challenge, as approximately 

2 million people became newly infected with HIV [18] .       

 Reverse transcriptase (RT), an important enzyme in HIV-1, catalyzes the transcription 

of the viral single-stranded (ss) RNA into double-stranded (ds) DNA. HIV RT consists of two 

subunits, the larger p66 and the smaller p51  [3], with  the polymerase and ribonuclease H 

(Rnase H) catalytic sites being located on the former. The polymerase domain of HIV 

resembles the right hand with fingers, thumb, palm, and connection sub-domain (FIGURE 20) 

[4]. A crucial role of RT in the life cycle of HIV-1 makes it the prime target of anti-retroviral 

therapy, such as non-nucleoside reverse transcriptase inhibitors (NNRTIs) [6]. The thumb and 

finger sub-domains of RT undergo conformational changes to perform the process of reverse 

transcription. The NNRTIs bind in the binding pocket is approximately 10 Å away from the 

polymerase in RT and disrupts the conformational flexibility of the enzyme [3].   
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Figure 20: Sub-domains of HIV RT 

Different sub-domains of HIV RT,  i.e. thumb (blue), finger (red), palm (violet), and connection sub-domain (green) along 
with bound NNRTI rilpivirine. Index for the distance between finger and thumb, i.e. Trp 24 in the fingers and Lys 287 in the 

thumb are depicted with green spheres.      

 

 Regardless of improvement in anti-HIV therapy, HIV remains a challenge due to the 

rapid onset of mutations instigating drug resistance. Continuous efforts are underway to 

understand the effect of mutations on drug binding at the molecular level. Crystallographic 

studies have revealed that mutations causing NNRTI-resistance are mainly located in the 

vicinity of non-nucleoside inhibitor binding pocket (NNIBP) [64-66]. Mutations close to the 

NNRTI binding pocket appear to convene resistance to NNRTIs by either reducing the binding 

affinity of ligand or altering the dynamics of entry/exit of a drug. Mutation of Lys to Asn at 

position 103 (K103N) in the binding pocket is the most common NNRTI mutation in the 

KwaZulu-Natal province of South Africa, [207] and it is associated with anti-HIV treatment 

failure [208]. The importance of this mutation in the onset of NNRTI resistance motivated a 

comparison of the conformational dynamics of K103N mutated HIV-1 RT with WT HIV-1 RT 

bound to the NNRTI.     

Our earlier scaffold-based QSAR study [7] identified two potential ligand scaffolds against 

HIV-1 RT (FIGURE 21). In that study, it was shown that some NNRTIs scaffolds had a higher 

coefficient of determination (Q2) values, which accounts for higher structural variations 

appearing in the QSAR model.   
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Figure 21: Strcuture of NNRTI. 

The structures of two identified potential chemical scaffolds of NNRTI (A) DAPY (Di-aryl pyrimidine) (B) DABO (Dihydro-
alkoxy-benzyl-oxopyrimidine) and (C) rilpivirine a DAPY derivative [7] 

 

This study also indicated the importance of aromaticity, the number of nitrogen atoms and the 

structural flexibility of pyrimidine derivatives NNRTIs [7].  

Previous studies have dealt with the molecular basis of NNRTI resistance due to K103N 

mutation in RT [68, 146] using 500 ps explicit MD simulation. Rilpivirine is a Di-aryl 

pyrimidine (DAPY) derivative with potent anti-HIV-1 RT activity against both WT and mutant 

HIV-1 RT (FIGURE 21). Its ability to reasonably adapt to the K103N mutation in RT is 

assumed to be due to the structural flexibility and the hydrogen bond formed by the linker N 

atoms [149]. This motivated an investigation of the dynamics of HIV-1 RT sub-domains in 

WT and K103N mutant, complexed with rilpivirine.  

Due to a limited understanding of the conformational dynamics of K103N mutant HIV-1 RT, 

a cumulative 240 ns explicit MD simulation for WT and K103N mutant RT-rilpivirine 

complexes were performed in this study. The trajectories were analyzed based on backbone 
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root mean square deviation (RMSD), root mean square fluctuation (RMSF), the radius of 

gyration (Rg), hydrogen bonding, analysis of distances between thumb and finger sub-domains, 

essential dynamics based on PCA, and dynamic pharmacophores (dynophore). Ligand binding 

often involves dynamic conformational transitions that may not be evident from a single, static 

structure [209]. Molecular geometry and chemical characteristics of the binding pocket in 

protein molecules play  a crucial role in ligand binding [210]. The nature of the binding surface 

[211], as well as the complementary shape and polarity [212] are also assumed to be 

contributing factors in ligand-protein binding. An analysis of NNIBP volume over 30 ns MD 

simulation is also discussed. 

 

5.3. Methods 

5.3.1. HIV RT and NNRTI model preparation  
 

An initial 3D model of free and bound WT HIV-1 RT was taken from the crystal structure of 

HIV-1 reverse transcriptase in complex with rilpivirine (PDB: 4G1Q) [213]. For the K103N 

mutant HIV-1 RT enzyme, HIV-1 K103N reverse transcriptase in complex with etravirine 

(PDB: 3MED) was undertaken [66]. Both etravirine and rilpivirine correspond to the same 

class of NNRTIs chemical scaffolds and adopted the similar pose inside the NNRTI binding 

pocket (superimposed crystal structure is shown in S1). The crystallographic waters were 

removed, and the correct protonation state was predicted and assigned using Propka [214, 215]. 

The structure of rilpivirine was sketched using ACD/ChemSketch [216] and the geometry was 

optimized with HF/6-31G*. The restrained electrostatic potential (RESP) charges [217, 218] 

were calculated using Gaussian09 [188] and fitted using the antechamber tool of Amber [111, 

219]. The ligand was docked into the binding pocket in the K103N HIV-1 RT by making a grid 

box (spacing of 1Å and size of 24 ×24 × 24) around catalytic residue D110, D185 and D186 as 

well other residues of the pocket. Molecular docking was performed by Raccoon AutoDock 

[190] using AutoDockTools (ADT) [191] and AutoDockVina [117] with default docking 

parameters. The Lamarckian Genetic algorithm [128] was used as the search algorithm with 

default parameter values. The docking protocol was followed as described in our previous 

work[7].  
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5.3.2. Molecular dynamic simulation 
 

Rilpivirine was parametrized using general amber force field (GAFF) [111, 219] with 

Antechamber. MD simulations were performed in Amber 12 [112] using the ff99SB force field 

[220] with the explicit TIP3P water model [221] box, keeping a minimum distance of 8 Å 

between the solute and each face. Missing hydrogen atoms were predicted and added using 

propka3.1 [214, 215] and Cl- ions were utilized to neutralize the system using the Leap program 

of Amber12. Propka assign protonation state of an amino acid in protein based on empirical 

pKa prediction of titratable residues while considering its microenvironment. The long-range 

electrostatic force was treated using the particle mesh Ewald (PME) method [222], with a direct 

space and vdW (van der Waals) cutoff of 12 Å. Prior to the MD runs, the systems were partially 

minimized with a restrained force of 500 kcal/mol on the solute molecule using 750 cycles of 

the steepest descent, followed by 2500 cycles of the conjugate gradient method. The system 

was further minimized for 1500 cycles of conjugate gradient method, after which the systems 

were heated gradually from 0 to 300 K with a harmonic restraint of 10 kcal/mol to hold the 

solute fixed. Langevin dynamics was used to control the temperature using a collision 

frequency of 1.0 ps-1 and constant volume MD simulation. Before the production phase, MD 

systems were equilibrated for 2 ns at 300 K with a constant pressure of 1 bar. The SHAKE 

algorithm [223] was used to constrain bonds involving hydrogen atoms. A total of eight MD 

systems were prepared in this fashion, two for free RT (WT and K103N RT) and six for RIL-

RT complex. The production phase of NPT MD was run for 30 ns with a time step of 2 fs using 

GPU version of Amber 12 [224], thus a total of 240 ns cumulative MD simulation was 

performed and analyzed in this work. The MD trajectories were analyzed for RMSD, RMSF, 

Rg, distance between thumb and fingers, and number of hydrogen bonds, for which the Ptraj 

and cpptraj [225] module of Amber 12 was used. The trajectories were also analyzed for pocket 

volume using MDpocket [226].  

 

5.3.3. Principal component analysis (PCA) 
 

To identify the correlated motion of  the HIV-1 RT sub-domain, PCA analysis of the MD 

trajectories was performed. PCA is a multivariate statistical approach to reduce the dimensions 

of data, the intention being to remove the rotational and translational movement, and to excerpt 
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the important motion from a MD simulation. This can be used to compare the conformational 

changes over the two MD trajectories. In PCA of the MD, eigenvalues and eigenvectors are 

obtained by diagonalizing the covariance matrix of atomic fluctuation. The eigenvector with 

the largest possible variance in the dataset is called first principal component (PC1). Each 

succeeding eigenvectors or PCn (where n =2, 3…, n) in turn has the highest possible variance 

under the condition that is perpendicular to the previous PC. The eigenvalues represent the 

extent of motion, while the eigenvector defines the direction of motion [227]. The motion 

defined by the principal components was visualized by projecting the trajectory onto it. PCA 

was performed on backbone atoms of all the 30 ns MD trajectory. The ions and solvent 

molecules were stripped and the trajectory was rms fitted to the first frame. Ptraj from Amber 

12 suite was used to perform the PCA and the porcupine plot of protein motion was created by 

NMWiz GUI for ProDyPrody [228] in VMD [229].    

 

5.3.4. Binding free energy calculation 
 

To assess the impact of the mutation on the ligand-protein affinity, binding free energy 

calculations for WT RT-RIL and K103N RT-RIL complex were performed using the MM-

PB/GB SA method implemented in Amber 12. The free energy of ligand binding is the 

difference in free energy between two states, i.e. bound and unbound states of two solvated 

protein molecules (equation 1). 

     

( )

[ ] [ ] [ ]aq aq aq

G bind

L P LP   (1) 

 [L]=ligand concentration, [P]=protein concentration and [LP]= complex concentration 

Oweing to practical reasons, equation 1 is not ideal for free energy calculation. An effective 

way is to divide the calculation as below: 

 ( , )( , ) ( , ) ( , ) ( , )aq complexbind aq bind vacuum aq lig aq receptorG G G G G        (2) 
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In the MM-GBSA approach, the electrostatic component of the solvation free energy is 

calculated by solving the Generalized Born (GB) equation and adding an empirical term for 

hydrophobic contributions as: 

 gb hydrophobicaqG G G       (3) 

  

Linearised Poisson Boltzman equation is used for calculating solvation free energy in MM-

PBSA method. ΔGvacuum is obtained using the following equation by calculating the average 

interaction energy between receptor and ligand, and by taking the entropy change upon binding 

into account: 

 

 vacuumG H T S       (4) 

 

Where T is the absolute temperature and ΔS is the change in entropy. 

The average interaction energy of ligand with WT and mutated RT was calculated from 6000 

snapshots extracted from 30 ns trajectories.    

5.3.5. Dynophores 
 

The mode of interaction between a ligand and its target can be represented by a structure-based 

3D pharmacophore that describes the ensemble of electronic and steric features responsible for 

the interaction [230]. However, such pharmacophores only provide a static view of the ligand-

target-interactions derived from a single conformational state of the complex, e.g. a crystal 

structure or a docking pose. In a novel dynamic pharmacophore approach, termed dynophores, 

which is an extension of the classic 3D pharmacophores, with statistical and sequential 

information about the conformational flexibility of a molecular system derived from MD 

simulations. For dynophore generation, pharmacophores are automatically created from each 

snapshot of an MD simulation. Pharmacophore features reoccurring over time, which share (i) 

the same feature type (e.g. hydrogen bond donor or hydrophobic regions) and (ii) the same 

atoms on ligand-site, are grouped into so-called dynophore “superfeatures”. They contain 

information about the feature types and interaction partners between ligand and target, which 
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are monitored in terms of their occurrence frequency (statistical behavior) and occurrence 

pattern (sequential behavior). The program used to generate dynophores and analyze the 

interactions pattern is  DynophoreApp [231], which uses the API of the ilib/LigandScout 

framework [232, 233], a software for 3D pharmacophore modeling. 

Dynophores provide a broad applicability scope as a MD analysis tool used in molecular 

modeling studies. While the analysis of MD trajectories typically focuses on selected inter-

atomic distances and angles, statistics on the occurrence of specific chemical interactions (i.e. 

chemical and steric complementarity of certain chemical moieties on ligand and target side) 

during a MD trajectory yield a more comprehensive view on the dynamics of ligand binding 

by evaluating the importance and spatial evolution of chemical interactions. Recently 

dynophores analysis has been used to highlight subtle but relevant binding differences of highly 

similar muscarinic M2 acetylcholine receptor modulators [234]. 

 

5.4. Results and discussion 
 

In this section, MD trajectories of free and bound WT HIV-1 RT were analyzed to understand 

how the binding of rilpivirine alters the dynamics of HIV-1 RT, as well as the reason behind 

the ability of rilpivirine to withstand the drug resistance. The results from the RMSD and 

RMSF analysis, the ligand’s mode of binding inside the NNRTI binding pocket, radius of 

gyration, analysis of distance between thumb and fingers, analysis of NNIBP volume, PCA 

and dynophore analysis are presented here.    

 

5.4.1. RMSD and RMSF analysis 
 

The structural stability of all the trajectories is depicted by the RMSD plot, the root means 

square deviation (in Å) of backbone atoms, in reference to the first frame of 30 ns production 

MD, is shown in FIGURE 22. The average value of the protein backbone RMSD over the 30000 

frames for free K013N RT, K103N RT-RIL, free WT and WT-RPV were 3.2, 3.7, 2.9 and 3.5 

Å, respectively. RMSD plots of additional MD runs are provided with supplementary 

information (FIGURE S2). All the RMSD plots have plateaued during the 30-ns simulation 

time scale. Reasonable convergence was achieved, as the RMSD curve become stable after 12 
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ns for all the structures, though K103N RIL shows more fluctuation in RMSD values between 

20 – 21 ns in one of the simulations (FIGURE 22). It is also evident that a single mutation from 

LYS to ASN at position 103 does not bring any significant changes in the overall conformation 

of RT over 30 ns MD trajectories. This observation is consistent with the earlier crystal 

structure study, where it was found that the overall conformation of mutant RT does not differ 

significantly from the wild-type [235].  

 

 

 

Figure 22: RMSD plot of backbone atoms of HIV-1 RT. 

RMSD plot of backbone atoms of HIV-1 RT over 30 ns MD trajectories. WT RT in red, WT RT-RIL complex in black, K103N RT 
in green and K103N RT-RIL complex is shown in blue.   

 

5.4.2. Ligand’s mode of binding inside the NNRTI binding pocket  
 

To assess the mutation effect on the induced ligand conformation, the RMSD of ligand inside 

the NNRTI binding pocket in RT were calculated. FIGURE 23 shows the ligand RMSD bound 

to WT RT and K103N RT. Ligand RMSD for additional simulation is shown in supplementary 

figures (FIGURE S4).  
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Figure 23: RMSD of rilpivirine inside the NNIBP. 

RMSD of rilpivirine inside the NNIBP of WT RT and K103N RT over 30ns MD trajectories with different part marked as A, B, C 
and D. The corresponding structure of rilpivirine is presented in Figure 5  

 

It is interesting to note that rilpivirine, takes two different conformations inside the binding 

pocket during the simulation time (FIGURE 23, S3). FIGURE 24 shows the average ligand 

structure calculated over different parts of the trajectory for WT and the mutated systems 

marked as A, B, C and D in FIGURE 23. NNRTIs can take different modes inside the binding 

pocket, such as ‘horseshoe’ or ‘butterfly’ shapes [236], with rilpivirine being known to bind 

RT in multiple modes. It was observed that rilpivirine adopts the butterfly conformer inside the 

binding pocket of K103N RT, compared to the horseshoe shape in WT RT. However, when we 

repeat the MD simulation 2 more times with different starting structures, rilpivirine takes only 

horseshoe shape. Nonetheless, all the three RMSD plots of rilpivirine supports the notion of 

torsional flexibility (‘‘wiggling’’) and repositioning and reorientation within the pocket 

(‘‘jiggling’’). Such adaptations seem to be critical for the ability of the DAPY analoges to 

preserve their potency against drug-resistant mutant HIV-1 RTs[199]. 
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Figure 24: 3D structure of rilpivirine. 

Structure of rilpivirine inside the NNRTI binding pocket in WT RT (A) frame 1 to 56 (B) frame 57 to 2000. Inside K103N 
mutated RT (C) frame 1 to 1422 (D) frame 1432 to 1855. Hydrogen atoms are not shown for clarity.   

 

FIGURE S5 shows the rotation of the benzonitrile ring of rilpivirine inside the binding pocket 

of WT RT and K103N RT over the MD trajectory. The dihedral angle was measured using C8, 

N2, C1 and C2 atoms (FIGURE S5A), with plot of the dihedral angle vs simulation time 

corresponding with the changes in the ligand RMSD, as is shown in FIGURE 23. In the case of 

WT RT, the plane of the benzonitrile ring mainly forms an angle greater than 50˚ to give the 

horseshoe shape. Inside the binding pocket of K103N RT, it attains an angle of around ±180˚ 

over more than half of the simulation time, which gives the butterfly shape to the ligand. This 

reconfirms our earlier observation regarding the multiple conformations that rilpivirine adopts 

inside the WT and mutated HIV-1 RT.      

Fluctuations in the Cα atom of each residue is shown in FIGURE 25, where it is evident that a 

single mutation K103N in the NNRTI binding pocket does not alter the overall structural 

flexibility of HIV-1 RT. This observation is in line with a previous study on RT, where no 

effect of the N348I/T369I double mutation on RMSF of RT was found [237].  
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Figure 25: Root mean square fluctuation. 

RMSF of Cα atoms of residues in HIV-1 RT. Residues are grouped into RT sub-domain they are the part of i.e. finger, palm, 
thumb, connection, and RNaseH.   

 

5.4.3. Radius of gyration  
 

The radius of gyration (Rg) refers to the distribution of atoms from the protein’s center of mass 

(COM), indicating the level of protein compactness [238]. FIGURE 26 shows the plot of the 

Rg evolution during the MD simulation for WT and K103N mutated HIV-1 RT.  
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Figure 26: Radius of gyration (Rg) 

Plot of Rg of Cα atoms of HIV RT over the simulation time.   

For the brief initial time of 250 ps, all four trajectories showed similar Rg values, with the free 

WT and K103N RT had lower Rg values compared to the two RT-RIL complex. The WT and 

mutated RT-RIL complexes show the same Rg over the 30 ns, suggesting that there is no 

change in their structural compactness. A higher Rg, as in the case of RT-RIL, suggest the 

opening of the binding pocket in the protein to accommodate the entry of the ligand. This is 

supported by the histogram of Rg in FIGURE S6, where the free enzymes have a higher 

population of compact conformations compare to the RT-RIL complex. It is notable that there 

is an increase in Rg of the free mutated RT compared to the free WT RT around 9000 ps, where 

the mutated free protein takes less compact conformations. This encouraged us to explore the 

dynamics of thumb and fingers by calculating the distance between thumb and finger sub-

domains of HIV RT (FIGURE 20). This analysis is discussed in the later section.  

 

5.4.4. Analysis of distance between thumb and fingers 
 

A double stranded nucleotide is held at the polymerase site by the thumb and fingers of RT. 

Their dynamics plays a major role in the RT functioning, and the NNRTI binding disrupts it 



Chapter 5: Insights on NNRTI binding 

 

107 

 

[3]. The opening and closing of the thumb and finger sub-domains can be described by the 

relative distance between them. The correct placement of 3′ end of RNA/DNA primer in the 

polymerase cavity is crucial for reverse transcription process. To understand the impact of 

K103N mutation and ligand binding on thumb and fingers dynamics, the relative distance 

between the COM of 24 TRP and 287 LYS were measured. It has been shown that the distance 

between these two residues clearly reflects the opening/closing of the thumb and finger sub-

domains [239]. FIGURE 27 shows the plot of the distance measured over the entire 30 ns of 

simulation.  

 

 

Figure 27: The plot of distance (in Å)  

The plot of distance between COM of 24 TRP of fingers and 287 LYS of thumb sub-domain of HIV-1 RT. 

The average distance between the COM of 24 TRP and 287 LYS in the WT RT-RIL and 

mutated RT-RIL is 52.2 Å and 44.6 Å respectively and does not show significant fluctuation. 

However, the average distances in case of the free WT and mutated RT changes at 

approximately 43.9 Å and 37.5 Å respectively. It should be noted that the increase in distance 

(approximately 2 Å) between thumb and finger sub-domains after 9.5 ns is also supported by 

the increase in Rg (around 1 Å) of free mutated protein around the same frame.     

 

5.4.5. Analysis of NNRTI binding pocket (NNIBP) volume  
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The NNIBP (FIGURE S7) volume in Å3 for 30 ns trajectories is plotted in FIGURE S8, with the 

average volume of the NNIBP for WT RT-RIL and mutated RT-RIL complex being 550.4 Å3 

and 527.8 Å3 respectively. The free WT (191.1 Å3) and mutated RT (432.9 Å3) NNIBP volume 

differs considerably. It is interesting to note that the free K103N mutated enzyme has very large 

NNIBP compared to the free WT. While a wide open NNIBP can fit a larger variety of 

inhibitors without large steric clashes, a completely open binding site is not necessarily suitable 

to efficiently fit a given ligand [226]. This is possibly the reason that mutated enzyme binding 

pocket is energetically unfavorable for ligand binding, as the required active residues to interact 

with the ligand is not available.  

 

5.4.6. Principal component analysis  
 

To investigate the major motions in the HIV-1 RT enzyme, principal component analysis 

(PCA) on 30 ns trajectories was carried out. FIGURE S9 in supplementary shows the plot of 

the structural variance explained by the first 20 eigenvalues (principal component). The 2D 

projection of MD trajectory on to the first two PCs obtained from diagonalization of the 

covariance matrix of the atomic fluctuations is shown in FIGURE 28.  

 

Figure 28: PCA plot 

Projection of MD trajectories on the first two PCs (A) WT and K103N mutated complex and (B) free WT and K103N mutated.  

K103N RT shows some conformational subspace overlap with the WT RT trajectories, 

implying that K103N RT samples only a part of the conformational subspace covered by WT 
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RT. It is noteworthy that mutated RT, when bound with rilpivirine, spans two distinct 

conformational sub-space in two out of three simulations. However, the free WT and mutated 

proteins have similar variances along the first and second PCs as well as higher overlap, 

indicating that they take the same conformations. Based on this observation, it could be inferred 

that conformational ensembles explored during the simulation time by RIL- K103N RT is 

different than its WT counterpart.    

 

Figure 29: Porcupine plot of significant motion in HIV-1 RT   

Porcupine plot showing the significant motion across the first PC in the apo (A) K103N mutated RT and (B) WT RT, (C) K103N 
RT-RIL complex (D) WT RT-RIL complex. The color of the protein strands signifies the extent of motion and arrows shows the 

direction of correlated motion. Blue color reflects the highest movement followed by green, whereas red depict least 
moving parts of the protein.  

Based on the RMSF plot (FIGURE 25), it is evident that finger (residues 1-84 and 120-150) and 

thumb (residues 244-322) are the highly flexible regions, whereas the connection and palm 

sub-domains show fewer fluctuations. Interestingly, the porcupine plot (FIGURE 29) 

reconfirmed our observation that the prominent motion in RT is seen in both the thumb and 

finger sub-domains, whereas the connection sub-domain is rigid. The motion of sub-domains 

differs between the WT RT and K103N mutated RT, which suggests that the dynamics of the 

RT sub-domains and the impact of the mutation on the conformational variation of the RT 

enzyme could be of great significance.      
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5.4.7. Binding free energy of rilpivirine with HIV-1 RT  
 

The average free energies of the solvation and other MM energy components for 30 ns MD 

trajectories of HIV RT complex with rilpivirine are given in TABLE 8.   

 

 

Table 8: Binding free energy (ΔGbind in kcal/mol). 

Free energy and different energy components, such as van der Waals (ΔEVDW), electrostatic energy (ΔEEle) and solvation 
energy (ΔESol GB and PB) for mutant and WT complex. 

Complex ΔEVDW ΔEEle ΔESol (GB) ΔESol (PB) ΔGBind(GB) ΔGBind(PB) 

K103N RT -63.43 - 12.08 25.82 67.00 -49.70 -8.51 

WT RT -67.66 -13.70 28.60 69.26 -52.76 -12.10 

 

The contribution of MM van der Waals and electrostatic energy to the ΔGbind is higher (more 

negative) in the WT-RPV complex, whereas the calculated solvation energy is slightly higher 

for binding of rilpivirine with WT-RPV. The ΔGbind (GB) for the RIL-WT RT complex is -

52.76 kcal/mol, and for K103N RT-RIL complex -49.70 kcal/mol.  There is only a minor of -

3.06 kcal/mol in the ΔGbind of rilpivirine with WT and mutant HIV-1 RT, suggesting its similar 

biological activity against both strains of HIV-1 RT. Similar, trend is also seen with 

ΔGBind(PB). This observation is in agreement with the experimental biological activity 

measurement, where rilpivirine shows close activity against WT (0.4 nM) and mutant HIV-1 

RT (0.3 nM) [240].    

 

5.4.8. Dynophore analysis 

 

A pharmacophore is composed of the abstract chemical and electronic features of a ligand that 

are responsible for its interaction with the binding pocket residues. To further understand the 

dynamic interaction of rilpivirine with the NNRTI binding pocket residues, novel dynamic 

pharmacophores, so-termed dynophores, were calculated for 2,000 equidistant snapshots of the 

30 ns MD trajectories. FIGURE 30 shows the calculated dynophores for WT RT and K103N 

RT bound with rilpivirine.  
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Figure 30: Comparison of the dynophores 

Dynaphores of (A) K103N mutated and (B) WT RT. Dynophores were generated from 2,000 equidistant snapshots MD 
trajectory. Occurrence percentages for the pharmacophore feature types, such as hydrogen bond acceptor and donor (HBA 

and HBD), as well as hydrophobic area (H), are shown with their associated interaction partners on the target site. The 
linker N atoms are encircled in gray.  

 

Rilpivirine belongs to the recent class of NNRTI, which has better tolerance for K103N 

mutation compared to the previous NNRTIs by interacting with the Asn103 in the mutant RT 

[241]. Dynophore-based analysis of the MD trajectories showed that the linker N atom of 

rilpivirine is constantly forming a hydrogen bond to Lys 103 in the wild type, whereas it 

permanently forms hydrogen bonds with Lys 101 (99.9%), but rarely with Asn 103 (1.3%) in 

the mutant enzyme. Our results, therefore suggest an interaction via hydrogen bonding between 

the linker N atom of rilpivirine and Lys 101, rather than the previously reported interaction 

with Asn 103 for the K103N mutant.  This observation indicates an alternative interaction after 

K103N mutation, potentially stabilizing the ligand in the binding site. Alternatively, for further 

analysis, hydrogen bonds that are formed between the ligand and surrounding residues in the 

range of 10 Å for more than 5% time of trajectory were calculated with ptraj. It was observed 
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that in WT RT, the H bond was formed between the N2 of rilpivirine and the oxygen atom of 

Lys 103, with 95% occupancy time. However, N2 of rilpivirine formed H bond with the 

Oxygen of Lys 101 over 92% of the K103N mutated RT’s trajectory. These results are in good 

agreement with the dynophore findings, with differences in occurrence frequencies possibly 

being attributed to the different hydrogen bonding distance and angle cutoffs in the ptraj [225] 

and LigandScout/DynophoreApp [233]. 

 

5.5. Implication of MD results in drug resistance of K013N HIV-1 RT 
 

Knowing that rilpivirine inhibits mutant HIV-1 RT [240], investigating the effect of mutations 

on drug resistance at the molecular level is of considerable significance. This motivated us to 

perform explicit MD simulation of rilpivirine bound to RT to investigate the molecular basis 

of its ability to withstand the binding site mutation of K103N in HIV-1 RT. The following 

insights could be gained from these results:  

 Conformational adaptability of rilpivirine, which belongs to the novel class of NNRTIs, assists 

their effectiveness against the mutated HIV RT. RMSD and dihedral analysis revealed that 

rilpivirine takes distinct conformations inside the binding pocket in the WT RT and K103N 

mutated RT. It takes a horseshoe shape inside the binding pocket of WT RT, whereas a butterfly 

conformation appeared in the K103N mutated RT. This could explain the reasonable biological 

activity profile of rilpivirine against various mutants, including WT HIV-1 RT [240].  

Binding free energies calculated using the MMGBSA method do not differ significantly 

between WT RT-RIL (-52.81 kcal/mol) and K103N RT-RIL complexes (-51.54 kcal/mol), 

suggesting rilpivirine’s ability to block both the  

MD simulations of rilpivirine bound WT and K103N mutant RT were analyzed in terms of 

ligand-protein interaction profiles using dynophores, suggesting an alternative interaction for 

the mutant RT compared to previous reports. The linker N atom of rilpivirine is constantly 

forming a hydrogen bond to Lys 103 in the WT, while permanently hydrogen bonding with 

Lys 101 (99.9%), but only rarely with Asn 103 (1.3%) in the mutant enzyme.  The outcome of 

this analysis suggests hydrogen bonding interaction between the linker N atom of rilpivirine 

and Lys 101 rather than the previously reported interaction with Asn 103 for the K103N 

mutant.  
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5.6. Conclusion 
 

Dynamics-based studies of enzyme systems are crucial for the molecular understanding of 

conformational changes and mechanism of drug resistance. To achieve this insight, a 

cumulative 240 ns molecular dynamics simulations of apo and rilpivirine bound WT HIV-1 

RT and K103N mutated HIV-1 RT in explicit solvent were performed. The findings showed 

that rilpivirine adopts different conformation due to “jiggling” and “wiggling” inside the 

NNRTI binding pocket of HIV-1 RT, indicating structural flexibility, thereby bypassing the 

drug resistance. Per residue fluctuations and PCA revealed that the major motion in RT was 

observed in both thumb and finger sub-domains, whereas the connection region was more rigid. 

It, therefore appears that investigating the dynamics of the thumb and finger sub-domains, and 

altering the rigidity of the connection domain, could also be an approach for HIV RT inhibition. 

Similar values of ΔGbind of rilpivirine with WT and mutant RT correlated with the good 

inhibitory profile against WT, as well as with the mutant HIV-1 RT. Dynophore-based analysis 

of interaction patterns during conducted MD simulations of HIV-1 wild type and K103N 

mutant suggest that the better resistance tolerance of rilpivirine comes from binding to LYS 

101 in K103N mutated RT. K103N mutation increased the NNIBP volume, which might be 

the reason for the poor binding of other ligands with RT. This study as well as previous 

crystallographic studies[199] suggests that any future development of novel NNRTI should be 

undertaken keeping the ligand’s ability to undergo conformational changes within the pocket, 

while improving the efficacy. Extension of this study dealing with investigations on similar 

line on other NNRTIs and mutant are currently in progress.    
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Figure S2: Superimposed structures of 3MED (blue) and 4G1Q (red). Superimposed structure of etravirine and 
rilpivirine inside the NNRTI binding pocket in their respective PDB is also shown in box.   
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A           B 

Figure S3: RMSD plot of backbone atoms of HIV-1 RT over two 30 ns MD trajectories  

 

 

A 

 

 

B 

Figure S4: RMSD of rilpivirine inside the NNIBP of WT RT and K103N RT over two MD run of 30ns 
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Figure S5: (A) rotation of benzonitrile ring in rilpivirine during the course of simulation (B) plot of rotation angle 
of rilpivirine in WT-RT (C) in K103N RT 
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Figure S6: Frequency histogram of Rg (Å) calculated for HIV RT over 30 ns MD simulation.   

 

Figure S7: A view of NNRTI binding pocket (red surface) inside the ensemble of (A) WT HIV-1 RT and (B) K103N RT, 

along with transparent grey external molecular surface, thumb is shown in green and fingers in yellow. The figure is 

generated from 20 ns MD trajectory. Binding cavity surface is shown at isovalue of 8 in VMD. The unit of isovalue can be 

expressed as number of alpha sphere centers in an 8 Å3 cube around each grid point per snapshot. The more a cavity is 

conserved (or dense) the higher this value. 
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Figure S8: Plot of cumulative average of NNIBP pocket volume (Å) calculated from 30000 snapshots for RT, RT-RIL, 

K103N RT and K103N RT-RIL. Sliding window of 200 was used to calculate the running average and is plotted against time 

(ps).   
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Figure S9: Proportion of variation explained by each PC. Values along the points in plot are cumulative variance. (A) 

K103N free HIV-1 RT, (B) WT free (C) WT-RPV (D) K103N-RIL  



Chapter 5: Insights on NNRTI binding 

 

121 

 

 

(A) 

 

(B) 

Figure S10: PCA plot of two MD simulation 
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CHAPTER 6 
 

Molecular dynamics simulations of various NNRTIs bound with E138K 

mutated HIV-1 RT 
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6.1. Abstract 

Irrespective of improvement in HIV treatment, challenges remain due to the rapid development 

of drug resistance due to mutations in HIV genomw. In this study, a cumulative 900 ns of 

molecular dynamic (MD) simulations of rilpivirine (RPV), efavirenz (EFV), and etravirine 

(ETR), bound with wild-type (WT) and GLU138LYS (E138K) mutated HIV-1 RT, were 

performed in solution. Binding free energy (MM-PB/GB SA) calculations were performed for 

all the ligand bound HIV-1 RT complexes. Calculated binding energies suggested the loss of 

potency of selected ligands against E138K-RT. Movement of the side chain of mutant residue 

(LYS 138) away from the binding pocket lead to loss of bonding with ligand, causing the drop 

in biological activity. This study investigated the underlying reason for selected NNRTIs 

failure to inhibit E138K mutant RT, which could be helpful to understand the molecular basis 

of HIV-1 RT drug resistance and design novel NNRTIs with improved drug resistance 

tolerance. Additionally, RPV binding with K103N HIV-1 RT is also investigated in this study.   

Keywords 

HIV-1, RT, Reverse Transcriptase, MD, Molecular Dynamics, Free energy, MM-PBSA, AIDS 
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6.2. Introduction  
 

With the adaptation of UNAIDS recommended “Fast-Track approach” for tackling the AIDS 

epidemic, the world is committed to ending it by 2030. Nevertheless, enormous challenges lie 

ahead in ending the epidemic completely, with approx. 2.1 million new HIV infections cases 

worldwide in 2015 [2]. Development of resistance against anti-retroviral drugs owing to 

mutations in the viral enzymes reduce the odds against AIDS. The enzyme Reverse 

transcriptase (RT) alongside protease has been the main targets of anti-HIV drugs used in 

multi-drug combination therapy. RT, an important enzyme in HIV-1, catalyzes the 

transcription of the viral single-stranded (ss) RNA into double-stranded (ds) DNA. The HIV-1 

RT consists of two subunits, the larger p66 and the smaller p51 [3], with polymerase and 

ribonuclease H (RNase H) catalytic binding sites [4]. There are two different class of drugs 

targeting the HIV-1 RT; NNRTI (non-nucleoside reverse transcriptase inhibitors) and NRTI 

(nucleoside reverse transcriptase inhibitors) both target different aspects of the RT functioning. 

There are currently four approved drugs in the NNRTI class –nevirapine (NEV), efavirenz 

(EFV), etravirine (ETR), and rilpivirine (RPV) (See FIGURE 31) — while delavirdine (DLV) 

was approved in 1997, but now is not recommend as part of initial therapy.  
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Figure 31: Structures of US FDA approved NNRTIs. 

Regardless of improvement in anti-HIV therapy, HIV remains a challenge due to the rapid 

onset of mutations instigating drug resistance. Despite being the prime target of anti-HIV 

therapy, RT is responsible for emerging resistance to other drugs in the class: first, directly to 

RT inhibitors and second, indirectly as a key basis for instigating genetic variations [60]. 

Crystallographic studies have revealed that mutations causing NNRTI-resistance are mainly 

located in the vicinity of non-nucleoside inhibitor binding pocket (NNIBP) [64-66]. Some of 

the observed NNRTI-resistance mutations are L100I, K101E, V106A, K103N, V179D, 

Y181C, Y188L, G190A, and E138K (in p51 sub-domain); K103N and Y181C being the most 

common in patients receiving NNRTI treatments [60]. Residues K101, K103, and E138 (in 

p51) are situated at the rim of the NNRTI binding pocket (NNIBP) entrance for most NNRTIs. 

The mutations in NNIBP leads to the loss of aromatic ring stacking interactions (Y181C or 

Y188L), steric hindrance (L100I or G190A/S), and alteration of hydrophobic interactions 

(V106A or V179D). Effects of drug resistance mutations are rather severe on the first-

generation NNRTIs (nevirapine, delavirdine, and efavirenz), for instance, high level of 
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resistance by Y181C to nevirapine. The K103N and E138K mutations are largely linked with 

treatment failure of the efavirenz and rilpivirine, respectively, when combined with tenofovir 

and emtricitabine [150, 151]. The K103N mutation had emerged as a clinical resistance 

mutation upon treatments with efavirenz, and it confers an almost uniform level of cross-

resistance to most NNRTIs [242-244], with the exception of the second-generation NNRTIs 

such as RPV and ETR [149]. The E138K is a non-polymorphic mutation in the p51 subunit of 

RT that is selected preferentially in patients receiving RPV and reduces its susceptibility up to 

5-fold [245]. In our previous study, we have explored the molecular level understanding of the 

binding of RPV to K103N mutated HIV-1 RT [246]. The study has suggested that RPV’s 

torsional flexibility (‘‘wiggling’’) and repositioning and reorientation within the pocket 

(‘‘jiggling’’) makes it withstand the drug resistance. Moreover, it was also proposed that the 

better resistance tolerance of rilpivirine is due to the formation of an alternate binding of linker 

N atom of rilpivirine to LYS 101 in K103N mutated RT [246]. The present study deals with 

E138K mutation in the p51 subunit of HIV-1 RT. Here we present MD simulation of wild-type 

(WT) and E138K HIV-1 RT complexed with efavirenz (EFV), etravirine (ETR), and rilpivirine 

(RPV). Additionally, MD simulation of K103N RT complexed with RPV is also presented. 

The main motivation behind this study is to understand why the second generation NNRTIs 

are able to bypass certain drug resistance mutation such as K103N, while at the same time 

being susceptible to E138K. Understanding of dynamics of NNRTI binding and effect of the 

mutation on drug binding is helpful in designing new inhibitors with better resistance tolerance.  

Due to the large size of HIV-1 RT (over 1000 amino acids) and the consequent increase in 

the computational cost of MD simulations has led to exclusion of the p51 subunit from most 

MD studies. In addition, the structural complexity and flexibility of the RT made the MD 

simulations more formidable, though potentially more rewarding. As GLU 138 (p51) is part of 

the NNRTI binding pocket, HIV-1 RT with a part of the p51 subunit was considered for 

cumulative 1 µs MD simulation. To understand the binding affinities of NVP, EFV, and ETR 

against mutant RT at the molecular level, this study is the first account of MD simulation for 

E138K HIV-1 RT.  

6.3. Materials and methods 

6.3.1. System preparation and MD simulations  

The initial starting structure of WT and mutants’ HIV-1 RT (E138K and K103N) was taken 

from X-ray structure. PDB 4G1Q [66] for wild-type (WT), 2HNY [247] for E138K and 3MED 
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[213] for K103N was used to model initial starting structure. The protonation of the HIV-1 RT 

was assigned at physiological PH by H++ web server [248]. The whole enzyme-inhibitor 

complexes were solvated in a cubic box of water 8 Å from protein surface and neutralized with 

counter ions using tleap suite of Amber14 [249]. We used the ff12SB [250] force field for 

protein, GAFF [111, 219] for ligands and the TIP3P model [221] for water. The selected 

NNRTIs were first modelled and docked inside the NNRTI binding pocket of RT as described 

in our previous work [246, 251]. A total of 9 such systems were prepared (See TABLE 9). All 

the systems were equilibrated in the NPT ensemble at 300 K for 2 ns, and then the 100 ns of 

production simulation for each system was performed in the NVT ensemble at 300 K using 

Amber14 [249]. The same protocol was followed for MD simulations as described in our 

previous work [246]. A total of 900 ns of cumulative MD simulations were carried out and 

analyzed in this work. Approximately over 93000 atoms were present in the solvated system. 

The MD trajectories were analyzed in terms of RMSD, RMSF, the distance between thumb 

and fingers, and number of hydrogen bonds using ptraj and cpptraj modules [225] of Amber 

14. 

 

Table 9:  A total of 9 MD systems were prepared as shown in the table below. 

 WT HIV-1 RT was modelled from PDB 4G1Q, E138K RT was modelled from PDB 2HNY. 

S. No. Ligand Protein (PDB) 

1 

Rilpivirine 

WT RT (4G1Q) 

2 K103N mutant RT (3MED) 

3 E138K mutant RT (2HNY) 

4 
Etravirine 

WT RT (4G1Q) 

5 E138K mutant RT (2HNY) 

6 
Efavirenz 

WT RT (4G1Q) 

7 E138K mutant RT (2HNY) 

8 
Free enzyme 

WT RT (4G1Q) 

9 E138K mutant RT (2HNY) 

 

6.3.2. Binding free energy calculations 

Binding free energy calculations for all nine MD systems were performed using the MM-

PB/GB SA method implemented in Amber 14. The binding free energy of ligand is the 

difference in free energy between two states, i.e. bound and unbound states of two solvated 

protein molecules as:  
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( )

[ ] [ ] [ ]aq aq aq

G bind

L P LP   (1) 

 [L]=ligand concentration, [P]=protein concentration and [LP]= complex concentration 

Due to practical reasons, equation 1 is not ideal for free energy calculations. An effective 

approach is to divide the calculations as follows: 

 ( , )( , ) ( , ) ( , ) ( , )aq complexbind aq bind vacuum aq lig aq receptorG G G G G        (2) 

 

In the MM-GBSA method, the electrostatic component of the solvation free energy is 

calculated by solving the Generalized Born (GB) equation and adding an empirical term for 

hydrophobic contributions as: 

gb hydrophobicaqG G G       (3) 

  

Linearised Poisson Boltzmann equation is used for calculations of the solvation free energies 

with MM-PBSA method. ΔGvacuum is obtained using the following equation by calculating the 

average interaction energy between a receptor and ligand, and taking the entropy change upon 

binding into account as: 

 

vacuumG H T S       (4) 

 

Where T is the absolute temperature and ΔS is the change in entropy. 

The average interaction energy of the selected NNRTIs with WT and mutated RT was 

calculated from 20000 snapshots extracted from each 100 ns MD trajectories.    

6.4. Results and Discussion 

In this section, 100 ns MD trajectories of all the systems mentioned in TABLE 9 are analyzed 

to understand how the binding of NNRTIs alters the conformational dynamics of HIV-1 RT. 

The results from the RMSD and RMSF analysis, the ligand’s mode of binding inside the 
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NNRTI binding pocket, radius of gyration, analysis of distance between thumb and fingers, 

PCA, and binding free energy analysis are presented here.    

6.4.1. RMSD and RMSF 

The root means square deviations (RMSD in Å) of the backbone atoms in reference to first 

frame for the MD trajectories are shown in FIGURE 32. A reasonable convergence is achieved 

as all the systems have been plateaued during the 100 ns production MD. It is also evident that 

a single mutation from GLU to LYS at position 138 in the p51 subdomain of RT does not bring 

any significant changes in the overall conformation of RT over 100 ns MD trajectories. This 

observation is in accordant with the earlier crystal structure study, where it was found that the 

E138K RT has phenomenal similar protein conformations to WT RT, except side-chain of 

mutant residue (LYS138) moves away from the NNRTI pocket [247]. Although, we see the 

difference in the case of ETR-E138K, where the structure of ETR-E138K deviates more from 

the reference structure as compared to its WT counterpart and other RT-NNRTI complexes 

(FIGURE 32). Deviation of backbone atoms of each residue (RMSF) from the reference 

structure over 100 ns trajectories is shown in FIGURE 33. It reconfirms that the single mutation 

(E138K) doesn’t impact the fluctuation of any region of RT in any significant way except that 

of ETR-E138K, where movement of each residue seems to be amplified. RMSF is also plotted 

for free WT and E138K in FIGURE 33B.  
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(a)  

 

(b) 

Figure 32: RMSD of backbone atoms of HIV RT in Å.  

(a) of all the systems (b) individual backbone RMSD of individual MD systems.  
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Figure 33: Root mean square deviation per residue (RMSF) 

 A: for all the RT-ligand complexes, B: Free HIV RT. 

 

6.4.2. Distance of GLU/LYS 138 from binding pocket 

FIGURE 34 shows the superimposed crystal structure of WT and E138K mutant RT. It is shown 

that side chain of LYS 138 moves away from the binding pocket resulting in loss of potential 

contact point for the ligand to bind inside the NNIBP which might lead to decrease or even loss 

of activity. For further assessment, LYS/GLU 138 sidechain distance was measured from the 

bound ligand.  The plot of the distance between the geometric center of side chain of GLU/LYS 

138 and of ligand is shown in FIGURE 35. For all the E138K systems, the side chain moved 

away from the binding pocket, leading to a reduction in potency. In the case of WT-RT, the 

distance generally is less than 10 Å, whereas in E138K-RT it is often close to or greater than 

15 Å. Although, the movement of the side chain of LYS is more prominent for ETR-RT 

complex.  

 

Figure 34: Structural superimposition of WT (blue) and E138K (red) HIV-1 RT along with crystal bound rilpivirine 
(yellow) and nevirapine (green). 

GLU 138 of WT RT and LYS 138 of mutant RT is also shown as stick. Side chains of LYS move away from the binding pocket 
as compared to the GLU in its WT counterpart. 
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Figure 35: Distance of side chains of GLU 138 (WT-RT) and LYS 138 (E138K-RT) from the geometric center of 
bound NNRTI. 

 (A) EFV-RT, (B) ETR-RT, and (C) RPV-RT complex.   

6.4.3. Hydrogen bond analysis 
 

Hydrogen bonds formed between the ligand and residues of NNRTI binding pocket is listed in 

TABLE 10, where H bond observed over 5 % of the MD trajectories are considered. H Bond 

between ligand-binding site residues formed over only a few frames doesn’t contribute 

significantly to stabilizing the ligand inside its binding pocket of protein.   
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Table 10: List of hydrogen bonds formed between the selected ligands and NNIBP residues.  

Only H bonds observed more than 5 % of simulation time is enlisted here. Acceptors are electronegative atoms whereas 
donors are the atoms connected to H atoms forming the bond with the acceptor. Atoms involved in the H bonds are given in 

parenthesis. 

NNRTI-RT complex Acceptor Donor % Time seen 

RPV-WT 
LYS 101(O) RPV (N5) 80  

RPV (N3) LYS 101(N) 10  

RPV-E138K 
LYS 101 (O) RPV (N5) 72 

RPV (N3) LYS 101 (N) 42 

EFV-WT 
LYS  101 (O) EFV (N1) 57 

GLU 138 (OE1) EFV(O2) 7 

EFV-E138K 
LYS 101 (O) EFV (N1) 75 

EFV (O2) LYS 103 (NZ) 5 

ETR-WT 
LYS 101 (O) ETR (N2) 87 

GLU 138 (OE1) ETR (N6) 5 

ETR-E138K 

ETR (N5) TYR 188 (OH) 16 

LYS 101 (O) ETR (N2) 14 

ETR (N5) TYR 181 (OH) 5 

 

RPV forms two H bonds, one with N5 and another with N3 of LYS 101 of WT and mutant RT 

as shown in FIGURE 36. EFV forms two H-bonds with WT RT, one with LYS 101 and second 

with GLU 138, whereas it is unable to make the bond with LYS 138 in the mutant. Same is 

with ETR, wherein mutant RT LYS 138 is unable to form any H-bond with it (see TABLE 10, 

FIGURE 37, and FIGURE 38). Disruption in hydrogen bonding network due to mutations seems 

to have the major contribution into the loss of NNRTIs potency against E138K HIV-1 RT. This 

phenomenon also causes the reduction in efficacy of nevirapine against other RT mutants such 

as K101E [247].  
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A       B 

Figure 36: Plots of ligand interactions with the close contact residues of NNRTIs binding pocket 

(A) RPV-RT WT-RT (B) E138K-R 



Chapter 6: MD of E138K RT 

 

134 

 

 

    A        B 

Figure 37: Plots of ligand interactions with the residues of NNRTIs binding pocket  

 (A) EFV-RT WT RT (B): E138K RT 
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A       B 

Figure 38: Plot of ligand interaction with the residues of NNRTIs binding pocket 

(A): ETR-RT (A) WT RT (B) E138K RT 

 

6.4.4. Distance analysis between thumb and fingers of HIV RT 
 

A double stranded nucleotide is held at the polymerase site by the thumb and fingers of RT. 

Their dynamics plays a major role in the RT functioning, and the NNRTI binding disrupts it 

[3]. The opening and closing of the thumb and finger sub-domains can be described by the 

relative distance between them. The correct placement of 3′ end of RNA/DNA primer in the 

polymerase cavity is crucial for reverse transcription process. FIGURE 39 shows the time 

evolution of distance between thumb and finger of RT. The distance between the center of mass 

(COM) of 24 TRP and 287 LYS was used as an index to measure the distance between thumb 

and ligand.   
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Figure 39: Plots of time evolution of distance between COM of 24 TRP in finger and 287 LYS located in thumb of 
HIV-1 RT of 

 (A) EFV-RT, (B) ETR-RT, (C) Free RT, and (D) RPV-RT complexes. 

Frequency histograms of the distance between thumb and finger sub-domain of RT over the 

MD trajectories are demonstrated in FIGURE 40.  

 

Figure 40: Histogram plots of the distance between thumb and finger sub-domain of HIV-1 RT for 

 (A) E138K RT and (B) WT-RT 
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6.4.5. MM-PBSA Binding free energies 
 

The average binding free energies for six 100 ns MD trajectories of HIV RT complex with 

EFV, ETR and RPV are reported in TABLE 11. It is evident from the calculated binding free 

energies that mutation at position 138 in p51 sub-domain leads to loss of efficacy of EFV, RPV, 

and ETR against E138K-RT, thus causing drug resistance. Loss of interactions due to the 

movement of side chain of LYS 138 away from the NNRTI binding pocket could be the 

possible reason behind this. This observation could also be inferred from the lower value of 

electrostatic contribution (ΔEEle), in the case of E138K-RT complexes.  

Table 11: Binding free energies (ΔGbind in kcal/mol). 

Free energy and different energy components, such as van der Waals (ΔEVDW), electrostatic energy (ΔEEle) and solvation 
energy (ΔESol PB) for mutant and WT complexes. 

Complex ΔEVDW ΔEEle ΔESol (PB) ΔGBind(PB) 

RPV WT -60.24 -26.89 48.40 -9.65 

RPV E138K -57.34 -4.83 26.50 -8.07 

EFV WT -40.00 -16.62 29.71 -9.55 

EFV E138K -41.98 -14.10 26.31 -6.40 

ETR WT -62.42 -20.77 43.29 -9.60 

ETR E138K -32.87 -11.21 66.39 -5.59 

 

6.5. Conclusions 
 

Atomistic level simulation studies of enzyme systems are vital for the through a molecular 

understanding of conformational changes and mechanism of drug resistance. To achieve this 

insight, a cumulative 900 ns molecular dynamics simulations of apo, RPV, EFV, and ETR 

bound WT HIV-1 RT and E138K mutated HIV-1 RT in explicit solvent were performed. 

RMSD and RMSF plots showed that the all the MD systems were converged as well as the 

single mutation (E138K) don't change the degree of fluctuation in any region of RT in any 

significant way except that of ETR-E138K. The findings showed that E138K mutation in HIV-

1 RT leads to loss of decrease in efficacy of even second generation NNRTIs such as RPV. 

Nevertheless, RPV adopts different conformations inside the NNIBP in K103N-RT, due to 

“jiggling” and “wiggling”, indicating structural flexibility, thereby bypassing the drug 

resistance. Binding free energy calculations showed that the mutation at position 138 in p51 
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sub-domain leads to loss of efficacy of EFV, RPV, and ETR against E138K-RT. Movement of 

the side chain of mutant residue away from the NNRTI binding pocket could be the possible 

reason behind the loss of protein-ligand interactions. 
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Chapter 7 
 

CONCLUSION 
 

In this thesis, scaffold based QSAR modeling have been used to model the structure-

activity relationship and to identify the potential chemical scaffold with anti HIV-1 RT activity. 

Further, fully atomistic MD simulations have been used to investigate the binding of NNRTI 

to RT enzymes in HIV-1.  

NNRTIs collected from the literature were used to calculate several QSAR models 

using ASNN algorithms and various molecular descriptors. For further application of different 

representations of chemical structures, a consensus QSAR model was calculated using selected 

individual model and analyzed for the scaffold’s performance. Some scaffolds had a lower 

coefficient of determination value. Suggesting that the scaffolds with high Q2 in the QSAR 

model have significant structural features correctly learned by the model. Thus, predicting 

structures of potential compounds based on these scaffolds would be accurate. The linear 

QSAR model was developed to highlight the structural features affecting anti-HIV activity. 

MMPA was shown as a powerful method for addressing the ‘black box’ nature of QSAR, and 

enable medicinal chemists to choose molecules for further optimization. Significant 

transformations in the backbone structure were identified using this method. We have shown 

that the model statistics for predicting new molecules should not be the only approach 

considered.  The scaffold-based analysis is a better approach to identify chemical scaffolds for 

further optimization. The calculated QSAR model and its sub-models are published on the 

OCHEM web site http://ochem.eu/article/93085 and are freely accessible for interested users. 

Their public availability will contribute to the widespread use of the computational chemistry 

tools on the Web. In this work, we also demonstrated the problem with extrapolation of QSAR 

models for new chemical series. Despite the failure of original consensus model to 

appropriately predict new data, the re-calculated model provided good performance for new 

compounds from the same series due to the change in the applicability domain (AD) of the new 

model. The AD of re-built model covered the compounds from new chemical series and thus 

was able to correctly predict their inhibitory activities (IC50). 

http://ochem.eu/article/93085
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Further, fully atomistic MD simulations have been used to investigate the binding of 

NNRTI to RT enzymes in HIV-1. In particular, changes to both structure and thermodynamic 

properties in the RT caused by mutations associated with drug resistance have been explained. 

The development of such mutations in response to therapy is well known and represents the 

main hindrance to treatment success. The primary cause of drug resistance is the lowering of 

the binding affinity between drug and target protein. While experimental techniques exist that 

measure this quantity, they cannot provide detailed molecular insight into the causes of 

resistance.  

In CHAPTER 5 MD simulation of Rilpivirine with WT HIV-RT and K103N HIV-RT 

is presented. Analysis of MD trajectories suggested that rilpivirine takes distinct conformations 

inside the binding pocket in the WT RT and K103N mutated RT. It takes a horseshoe shape 

inside the binding pocket of WT RT, whereas a butterfly conformation appeared in the K103N 

mutated RT. This elucidates the reasonable biological activity profile of rilpivirine against 

various mutants, including WT HIV-1 RT [240]. MD simulation of rilpivirine bound WT and 

K103N mutant RT was analyzed in terms of ligand-protein interaction profiles using novel 

dynophores method, suggesting an alternative interaction for the mutant RT compared to 

previous reports.  The outcome of this analysis suggests hydrogen bonding interaction between 

the linker N atom of rilpivirine and Lys 101 rather than the previously reported interaction with 

Asn 103 for the K103N mutant. Further, MD simulation and binding free energy calculations 

of ligand bound WT and E138K HIV-RT suggested that the mutation at position 138 in p51 

sub-domain leads to loss of efficacy of EFV, RPV, and ETR against E138K-RT. Movement of 

the side chain of mutant residue away from the NNRTI binding pocket could be the possible 

reason behind the loss of interactions.  The method adopted in this thesis is theoretically 

applicable to any system in which drugs bind to proteins and could be used to investigate the 

impact of mutations in a wide range of systems.  
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APPENDIX 
 

Parameters used in MD with amber 

Following are the script depicting the paraments used to generate MD trajectory 

1. Minimization of system 

Initial minimization of MMP3 (MMMM): solvent molecules and added ions 

 &cntrl 

  imin   = 1, 

  maxcyc = 1000, 

  ncyc   = 500, 

  ntb    = 1, 

  ntr    = 1, 

  cut    = 8.0, 

 / 

Hold the Protein fixed 

500.0 

RES 1 570 

END 

END 

2. Heating in stages 

Heating Step of MMP3 (MMMM): stage-1 

 &cntrl 

  imin= 0, 

  irest=0, 

  NTX=1,  

  ntb= 1, 

  NTPR=500, 

  NTWX=500, 

  NTWR=500, 

  ntr=1, 

  Tempi=00.0,  
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  Temp0=50.0, 

  NTT=3, 

  gamma_ln=1.0,  

  NTC=2, 

  NTF=2,  

  cut= 8.0, 

  nstlim=5000, 

  dt=0.002, 

/ 

Keep Protein and inhibitor fixed with weak restraints 

10.0 

RES 1 571 

END 

END 

3. Equilibration and production MD 

Equilibration Step of MMP3 (MMMM): stage-1 

 &cntrl 

  imin= 0, 

  irest=1, 

  NTX=7,  

  ntb=2, 

  ntp=1, 

  PRES0=1.0, 

  TAUP=2.0, 

  NTPR=500, 

  NTWX=500, 

  ntr=0, 

  Tempi=300.0,  

  Temp0=300.0, 

  NTT=3, 

  gamma_ln=1.0,  

  NTC=2, 
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  NTF=2,  

  cut=8.0, 

  nstlim=1000000, 

  dt=0.002 

 / 

I. Quantum Mechanics (QM) 
 

The word “quantum” in QM, it refers to a discrete unit assigned to certain physical quantities. 

In the quantum realm, particles are discrete packets of energy with wave-like properties. The 

mathematical formulations of quantum mechanics provided the basic framework of many fields 

such as computational chemistry, quantum chemistry, solid-state physics, atomic physics, 

particle physics, molecular physics, computational physics, nuclear chemistry, condensed 

matter physics, and nuclear physics. 

In the quantum mechanics, the state of a system at a time could be defined by a wave function. 

This allows for the calculation of probabilities of finding an electron in a particular region 

around the nucleus at a particular time. The region of high probability around the nucleus of an 

atom often referred to as "clouds", could be drawn where the electron might be located with 

the most probability. QM methods are based on the solution of the time-dependent Schrödinger 

wave equation. Like the Newton's equation in classical mechanics, the Schrödinger equation 

describes the change in wave function with time. This approach is appealing since many 

molecular properties (3D structure, energies etc.) can be computed directly from the electronic 

and nuclear structures, which are fundamental physical entities. The Schrödinger wave 

equation describes the motions of the electrons and nuclei and can be given as: 

 n n n         26 

where the Hamiltonian operator (Ĥ) is the summation of the kinetic (Ek) and potential (Ep) 

energy of the system and can be written as: 

      , k p           27 

Where P and X denote the joint momentum and position vectors for all the nuclei and electrons 

in the molecule. The potential energy Ep(X) originates from electrostatic interactions. Per this, 

the quantum states En (eigenvalues) form a discrete set, corresponding to the Eigen functions 

ψn, for the system of electrons and nuclei. The Schrödinger equation thus defines the spatial 
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probability distributions equivalent to the energy states in a stationary quantum system[73]. A 

solution of the wave equation for a protein is computationally very expensive. Thus, various 

semi-empirical and ab initio approximation methods are used. A very common approach 

employed is the Born-Oppenheimer approximation, which presumes that the nuclei of atoms 

are stationary with respect to the electrons due to their comparatively large mass. This cuts the 

problem to the computation of the wave function of the electrons in the field of the fixed nuclei 

only. This wave function can then be used to compute the forces on the nuclei, whose positions 

are updated using classical mechanics. The procedure is then repeated with the assumptions 

that the electrons move instantaneously with the nuclei to continue the evolution of the system. 

More computationally intensive methods, such as Car-Parrinello, are also available which can 

calculate the coupled nuclear and electron motions. More details of QM could be accessed in 

the literature[252].  

II. Molecular Mechanics (MM) 
 

Molecular mechanics also known as force-field or potential energy method employ classical 

mechanics to model molecular systems. A fundamental principle in molecular mechanics is 

that collective forces can be used to define molecular geometries and energies. The 3D structure 

eventually computed is could then be considered stable and at the lowest total internal energy. 

In MM, a molecule is treated as a collection of masses centered at the atoms linked by bonds 

(springs). The molecule can stretch, bend, and rotate about those bonds due to the inter and 

intramolecular forces (FIGURE 12). Molecular mechanics can be used to study molecule 

systems ranging in size and complexity from small to large biological systems or material 

assemblies with many thousands to millions of atoms.  

III. Hybrid approaches (QM/MM) 
 

Although classical MD can investigate many of the phenomena of biological systems with 

great detail, its inability to handle bond breaking/formation and evaluation of the transition 

states during reactions is a serious limitation in its part. A full QM calculation is 

computationally quite intensive, usually impractical for even moderately large systems. This 

has led to the advances in hybrid QM/MM methodology, where most of the system is treated 

by MM but a critical part is treated by QM. 

 

https://en.wikipedia.org/wiki/Classical_mechanics
https://en.wikipedia.org/wiki/Classical_mechanics
https://en.wikipedia.org/wiki/Molecular
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IV. Experimental methods for structure determination 
 

There are two main experimental techniques for the structure determination, X-ray 

crystallography, and nuclear magnetic resonance [253]. In cases, where structural 

determination by experimental methods are not possible, a blend of the existing related 

structures and protein sequence can be used to construct a model of the unknown structure. The 

technique of the elucidation of the 3D structure of the protein of unknown structure is known 

as homology modeling. 

I. X-RAY Crystallography 
 

It is a tool used for ascertaining the 3D atomic and molecular structure of a molecule, in which 

the crystalline atoms cause a beam of incident X-rays to diffract. By computing the angles and 

intensities of the diffracted beams, the 3D structure of the density of electrons within the crystal 

can be determined. From this electron density, the mean positions of the atoms, their chemical 

bonds, as well as their disorder can be determined. In practice X-rays with wavelengths 

between 0.4 Å to 1.6 Å are used to image proteins. The construction of high-quality atomic 

images needs an ordered array of objects to diffract the incident x-rays. Hence, instead of using 

proteins in a solution, it is necessary to crystallize them first. 

 Most of the X-rays scattered by a crystal atom destructively interfere but some 

constructively interfere also and form a diffraction pattern which can then be recorded on a 

photographic film. Analysis of this pattern using Bragg's law permits the spacing of the 

diffraction peaks to be related to the spacing of the atoms within the sample.  

II. Nuclear Magnetic Resonance Spectroscopy  

 

Nuclear magnetic resonance (NMR) spectroscopy is a technique in which the intrinsic 

magnetic moment of the atomic nuclei (1H, 13C, 15N or 31P) are used to probe their chemical 

environment [254]. Large magnetic fields are applied to a sample in order to align the nuclear 

spins of the atoms. Subsequently, the atoms are exposed to varying radio frequency which 

excites them into higher energy state. This excited state is transient, and atom comes down to 

its ground state by losing the extra energy in the form of radio frequency radiation. The specific 

frequency of the emitted wave is influenced by both the atom type and its environment. This 

resonant frequency is compared to a reference signal, the shift in the frequency is called the 

https://en.wikipedia.org/wiki/Electron
https://en.wikipedia.org/wiki/Chemical_bond
https://en.wikipedia.org/wiki/Chemical_bond
https://en.wikipedia.org/wiki/Entropy
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chemical shift and is measured in parts per million (ppm). By varying the frequency of radiation 

to which the sample is exposed different properties can be probed. In terms of 3D protein 

structures, the most important types of the technique used are correlation spectroscopy (COSY) 

and nuclear Overhauser effect (NOE). This gives information on H atoms which are covalently 

connected through one or two other atoms (i.e. they are very close in the protein sequence) and 

atoms which are close in space irrelevant of where they occur in the sequence respectively. 

Merging information from these two methods with knowledge of the protein sequence allows 

distances between atoms to be computed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

147 

 

BIBLIOGRAPHY  
 

1. UNAIDS., Joint United Nations Programme on HIV/AIDS (UNAIDS) (2011) World AIDS Day 
Report. Geneva, Switzerland: UNAIDS, 2011. 

2. UNAIDS, GLOBAL AIDS UPDATE. 2016. 
3. Kohlstaedt, L.A., et al., Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase 

complexed with an inhibitor. Science, 1992. 256(5065): p. 1783-90. 
4. Steitz, T.A., DNA polymerases: structural diversity and common mechanisms. J Biol Chem, 

1999. 274(25): p. 17395-8. 
5. Reynolds, C., et al., In search of a treatment for HIV--current therapies and the role of non-

nucleoside reverse transcriptase inhibitors (NNRTIs). Chem Soc Rev, 2012. 41(13): p. 4657-70. 
6. Tronchet, J.M. and M. Seman, Nonnucleoside inhibitors of HIV-1 reverse transcriptase: from 

the biology of reverse transcription to molecular design. Curr Top Med Chem, 2003. 3(13): p. 
1496-511. 

7. Bilal Nizami, I.T., Neil A. Koorbanally, Bahareh Honarparvar, QSAR models and scaffold-based 
analysis of non-nucleoside HIV RT inhibitors. Chemometrics and Intelligent Laboratory 
Systems, 2015. 148: p. 134-144. 

8. Weiss, R.A., How does HIV cause AIDS? Science, 1993. 260(5112): p. 1273-9. 
9. Cunningham, A.L., et al., Manipulation of dendritic cell function by viruses. Curr Opin 

Microbiol, 2010. 13(4): p. 524-9. 
10. Douek, D.C., M. Roederer, and R.A. Koup, Emerging concepts in the immunopathogenesis of 

AIDS. Annu Rev Med, 2009. 60: p. 471-84. 
11. Centers for Disease, C., Pneumocystis pneumonia--Los Angeles. MMWR Morb Mortal Wkly 

Rep, 1981. 30(21): p. 250-2. 
12. Centers for Disease, C., Kaposi's sarcoma and Pneumocystis pneumonia among homosexual 

men--New York City and California. MMWR Morb Mortal Wkly Rep, 1981. 30(25): p. 305-8. 
13. Gallo, R.C., et al., Isolation of human T-cell leukemia virus in acquired immune deficiency 

syndrome (AIDS). Science, 1983. 220(4599): p. 865-7. 
14. Barre-Sinoussi, F., et al., Isolation of a T-lymphotropic retrovirus from a patient at risk for 

acquired immune deficiency syndrome (AIDS). Science, 1983. 220(4599): p. 868-71. 
15. Coffin, J., et al., What to call the AIDS virus? Nature, 1986. 321(6065): p. 10. 
16. Santiago, M.L., et al., Foci of endemic simian immunodeficiency virus infection in wild-living 

eastern chimpanzees (Pan troglodytes schweinfurthii). J Virol, 2003. 77(13): p. 7545-62. 
17. Sharp, P.M., et al., The origins of acquired immune deficiency syndrome viruses: where and 

when? Philos Trans R Soc Lond B Biol Sci, 2001. 356(1410): p. 867-76. 
18. UNAIDS. AIDS fact sheet. 2015  [cited 2016 30 May]; Available from: 

http://www.unaids.org/en/resources/campaigns/HowAIDSchangedeverything/factsheet. 
19. Bentwich, Z., et al., Immune activation in the context of HIV infection. Clin Exp Immunol, 

1998. 111(1): p. 1-2. 
20. Gray, P.B., HIV and Islam: is HIV prevalence lower among Muslims? Soc Sci Med, 2004. 58(9): 

p. 1751-6. 
21. Templeton, D.J., Male circumcision to reduce sexual transmission of HIV. Curr Opin HIV AIDS, 

2010. 5(4): p. 344-9. 
22. Haase, A.T., Early events in sexual transmission of HIV and SIV and opportunities for 

interventions. Annu Rev Med, 2011. 62: p. 127-39. 
23. Tindall, B. and D.A. Cooper, Primary HIV infection: host responses and intervention 

strategies. AIDS, 1991. 5(1): p. 1-14. 
24. Kahn, J.O. and B.D. Walker, Acute human immunodeficiency virus type 1 infection. N Engl J 

Med, 1998. 339(1): p. 33-9. 

http://www.unaids.org/en/resources/campaigns/HowAIDSchangedeverything/factsheet


 

148 

 

25. Mehandru, S., et al., Primary HIV-1 infection is associated with preferential depletion of CD4+ 
T lymphocytes from effector sites in the gastrointestinal tract. J Exp Med, 2004. 200(6): p. 
761-70. 

26. Bennett, J.E., R. Dolin, and M.J. Blaser, Principles and practice of infectious diseases. Vol. 1. 
2014: Elsevier Health Sciences. 

27. McGovern, S.L., et al., A common mechanism underlying promiscuous inhibitors from virtual 
and high-throughput screening. J Med Chem, 2002. 45(8): p. 1712-22. 

28. Fields, B.N., D.M. Knipe, and P.M. Howley, Fields virology. 2007, Philadelphia: Wolters 
Kluwer Health/Lippincott Williams & Wilkins. 

29. Mahy, B.W.J. and M.H.V. Van Regenmortel, Encyclopedia of virology. 2008, Amsterdam; 
Boston: Academic Press. 

30. Coffin, J.M., S.H. Hughes, and H. Varmus, Retroviruses. 1997, Plainview, N.Y.: Cold Spring 
Harbor Laboratory Press. 

31. Frankel, A.D. and J.A. Young, HIV-1: fifteen proteins and an RNA. Annu Rev Biochem, 1998. 
67: p. 1-25. 

32. King, S.R., HIV: virology and mechanisms of disease. Ann Emerg Med, 1994. 24(3): p. 443-9. 
33. Chan, D.C. and P.S. Kim, HIV entry and its inhibition. Cell, 1998. 93(5): p. 681-4. 
34. Hu, W.S. and S.H. Hughes, HIV-1 reverse transcription. Cold Spring Harb Perspect Med, 2012. 

2(10). 
35. Zhao, R.Y. and M.I. Bukrinsky, HIV-1 accessory proteins: VpR. Methods Mol Biol, 2014. 1087: 

p. 125-34. 
36. Zheng, Y.H., N. Lovsin, and B.M. Peterlin, Newly identified host factors modulate HIV 

replication. Immunol Lett, 2005. 97(2): p. 225-34. 
37. Pollard, V.W. and M.H. Malim, The HIV-1 Rev protein. Annu Rev Microbiol, 1998. 52: p. 491-

532. 
38. Butsch, M. and K. Boris-Lawrie, Destiny of unspliced retroviral RNA: ribosome and/or virion? J 

Virol, 2002. 76(7): p. 3089-94. 
39. Hill, M., G. Tachedjian, and J. Mak, The packaging and maturation of the HIV-1 Pol proteins. 

Curr HIV Res, 2005. 3(1): p. 73-85. 
40. Alfano, M. and G. Poli, The HIV Life Cycle: Multiple Targets for Antiretroviral Agents. Drug 

Design Reviews - Online, 2004. 1(1): p. 83-92. 
41. Kohl, N.E., et al., Active human immunodeficiency virus protease is required for viral 

infectivity. Proc Natl Acad Sci U S A, 1988. 85(13): p. 4686-90. 
42. Warnke, D., J. Barreto, and Z. Temesgen, Antiretroviral Drugs. The Journal of Clinical 

Pharmacology, 2007. 47(12): p. 1570-1579. 
43. Cohen, C.J., Successful HIV treatment: lessons learned. J Manag Care Pharm, 2006. 12(7 

Suppl B): p. S6-11. 
44. De Clercq, E., The history of antiretrovirals: key discoveries over the past 25 years. Reviews in 

Medical Virology, 2009. 19(5): p. 287-299. 
45. AIDS info. 2017  [cited 2017 March 2017]; Available from: https://aidsinfo.nih.gov/. 
46. Bai, Y., et al., Covalent fusion inhibitors targeting HIV-1 gp41 deep pocket. Amino Acids, 

2013. 44(2): p. 701-13. 
47. Wensing, A.M., N.M. van Maarseveen, and M. Nijhuis, Fifteen years of HIV Protease 

Inhibitors: raising the barrier to resistance. Antiviral Res, 2010. 85(1): p. 59-74. 
48. Central dogma reversed. Nature, 1970. 226(5252): p. 1198-9. 
49. Chattopadhyay, D., et al., Purification and characterization of heterodimeric human 

immunodeficiency virus type 1 (HIV-1) reverse transcriptase produced by in vitro processing 
of p66 with recombinant HIV-1 protease. J Biol Chem, 1992. 267(20): p. 14227-32. 

50. Castro, H.C., et al., HIV-1 reverse transcriptase: a therapeutical target in the spotlight. Curr 
Med Chem, 2006. 13(3): p. 313-24. 

https://aidsinfo.nih.gov/


 

149 

 

51. Sarafianos, S.G., et al., Structure and function of HIV-1 reverse transcriptase: molecular 
mechanisms of polymerization and inhibition. J Mol Biol, 2009. 385(3): p. 693-713. 

52. Huang, H., et al., Structure of a covalently trapped catalytic complex of HIV-1 reverse 
transcriptase: implications for drug resistance. Science, 1998. 282(5394): p. 1669-75. 

53. Reardon, J.E., Human immunodeficiency virus reverse transcriptase: steady-state and pre-
steady-state kinetics of nucleotide incorporation. Biochemistry, 1992. 31(18): p. 4473-9. 

54. Ivetac, A. and J.A. McCammon, Elucidating the inhibition mechanism of HIV-1 non-nucleoside 
reverse transcriptase inhibitors through multicopy molecular dynamics simulations. J Mol 
Biol, 2009. 388(3): p. 644-58. 

55. De Clercq, E., Non-nucleoside reverse transcriptase inhibitors (NNRTIs): past, present, and 
future. Chem Biodivers, 2004. 1(1): p. 44-64. 

56. Hsiou, Y., et al., Structure of unliganded HIV-1 reverse transcriptase at 2.7 A resolution: 
implications of conformational changes for polymerization and inhibition mechanisms. 
Structure, 1996. 4(7): p. 853-60. 

57. Tantillo, C., et al., Locations of anti-AIDS drug binding sites and resistance mutations in the 
three-dimensional structure of HIV-1 reverse transcriptase. Implications for mechanisms of 
drug inhibition and resistance. J Mol Biol, 1994. 243(3): p. 369-87. 

58. Sluis-Cremer, N., N.A. Temiz, and I. Bahar, Conformational changes in HIV-1 reverse 
transcriptase induced by nonnucleoside reverse transcriptase inhibitor binding. Curr HIV Res, 
2004. 2(4): p. 323-32. 

59. Keele, B.F., et al., Identification and characterization of transmitted and early founder virus 
envelopes in primary HIV-1 infection. Proc Natl Acad Sci U S A, 2008. 105(21): p. 7552-7. 

60. Das, K. and E. Arnold, HIV-1 reverse transcriptase and antiviral drug resistance. Part 1. Curr 
Opin Virol, 2013. 3(2): p. 111-8. 

61. Wainberg, M.A., et al., Enhanced fidelity of 3TC-selected mutant HIV-1 reverse transcriptase. 
Science, 1996. 271(5253): p. 1282-5. 

62. Boyer, P.L., et al., Selective excision of AZTMP by drug-resistant human immunodeficiency 
virus reverse transcriptase. J Virol, 2001. 75(10): p. 4832-42. 

63. Sarafianos, S.G., et al., Trapping HIV-1 reverse transcriptase before and after translocation 
on DNA. J Biol Chem, 2003. 278(18): p. 16280-8. 

64. Das, K., et al., Crystal structures of 8-Cl and 9-Cl TIBO complexed with wild-type HIV-1 RT and 
8-Cl TIBO complexed with the Tyr181Cys HIV-1 RT drug-resistant mutant. J Mol Biol, 1996. 
264(5): p. 1085-100. 

65. Ren, J., et al., Structural basis for the resilience of efavirenz (DMP-266) to drug resistance 
mutations in HIV-1 reverse transcriptase. Structure, 2000. 8(10): p. 1089-94. 

66. Kuroda, D.G., et al., Snapshot of the equilibrium dynamics of a drug bound to HIV-1 reverse 
transcriptase. Nat Chem, 2013. 5(3): p. 174-81. 

67. Hsiou, Y., et al., The Lys103Asn mutation of HIV-1 RT: a novel mechanism of drug resistance. J 
Mol Biol, 2001. 309(2): p. 437-45. 

68. Rodriguez-Barrios, F., J. Balzarini, and F. Gago, The molecular basis of resilience to the effect 
of the Lys103Asn mutation in non-nucleoside HIV-1 reverse transcriptase inhibitors studied 
by targeted molecular dynamics simulations. J Am Chem Soc, 2005. 127(20): p. 7570-8. 

69. HIV drug resistance databse. 2017  [cited 2017 March]; Available from: 
https://hivdb.stanford.edu/. 

70. Cane, P.A., et al., Identification of accessory mutations associated with high-level resistance 
in HIV-1 reverse transcriptase. AIDS, 2007. 21(4): p. 447-55. 

71. Schuckmann, M.M., et al., The N348I mutation at the connection subdomain of HIV-1 reverse 
transcriptase decreases binding to nevirapine. J Biol Chem, 2010. 285(49): p. 38700-9. 

72. Nikolenko, G.N., K.A. Delviks-Frankenberry, and V.K. Pathak, A novel molecular mechanism of 
dual resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors. J Virol, 
2010. 84(10): p. 5238-49. 

https://hivdb.stanford.edu/


 

150 

 

73. Schlick, T., Molecular Modeling and Simulation An Interdisciplinary Guide 2nd Edition ed. Vol. 
21. 2010: Springer. 

74. Honarparvar, B., et al., Integrated Approach to Structure-Based Enzymatic Drug Design: 
Molecular Modeling, Spectroscopy, and Experimental Bioactivity. Chemical Reviews, 2014. 
114(1): p. 493-537. 

75. Kubinyi, H., QSAR and 3D QSAR in drug design Part 2: applications and problems. Drug 
Discovery Today, 1997. 2(12): p. 538-546. 

76. Ekins, S., et al., Progress in predicting human ADME parameters in silico. J Pharmacol Toxicol 
Methods, 2000. 44(1): p. 251-72. 

77. Perkins, R., et al., Quantitative structure-activity relationship methods: perspectives on drug 
discovery and toxicology. Environ Toxicol Chem, 2003. 22(8): p. 1666-79. 

78. Patel, H.M., et al., Quantitative structure–activity relationship (QSAR) studies as strategic 
approach in drug discovery. Medicinal Chemistry Research, 2014. 

79. Nantasenamat, C., et al., A Practical Overview of Quantitative Structure-Activity Relationship. 
Excli Journal, 2009. 8: p. 74-88. 

80. Consonni, V. and R. Todeschini, Handbook of molecular descriptors. Methods and principles 
in medicinal chemistry. 2000, Weinheim ; New York: Wiley-VCH. xxi, 667 p. 

81. Thormann, M., et al., Nomen Est Omen: Quantitative Prediction of Molecular Properties 
Directly from IUPAC Names. The Open Applied Informatics Journal, 2007. 1(1): p. 28-32. 

82. Sushko, I., et al., Online chemical modeling environment (OCHEM): web platform for data 
storage, model development and publishing of chemical information. J Comput Aided Mol 
Des, 2011. 25(6): p. 533-54. 

83. Cherkasov, A., Inductive QSAR Descriptors. Distinguishing Compounds with Antibacterial 
Activity by Artificial Neural Networks. International Journal of Molecular Sciences, 2005. 
6(1): p. 63-86. 

84. Varnek, A., et al., Substructural fragments: an universal language to encode reactions, 
molecular and supramolecular structures. J Comput Aided Mol Des, 2005. 19(9-10): p. 693-
703. 

85. Varnek, A., et al., ISIDA - Platform for Virtual Screening Based on Fragment and 
Pharmacophoric Descriptors. Current Computer Aided-Drug Design, 2008. 4(3): p. 191-198. 

86. Bonachera, F., et al., Fuzzy tricentric pharmacophore fingerprints. 1. Topological fuzzy 
pharmacophore triplets and adapted molecular similarity scoring schemes. J Chem Inf 
Model, 2006. 46(6): p. 2457-77. 

87. Ruggiu, F., et al., Individual Hydrogen-Bond Strength QSPR Modelling with ISIDA Local 
Descriptors: a Step Towards Polyfunctional Molecules. Mol Inform, 2014. 33(6-7): p. 477-87. 

88. Ruggiu, F., et al., ISIDA Property-Labelled Fragment Descriptors. Molecular Informatics, 2010. 
29(12): p. 855-868. 

89. Skvortsova, M.I., et al., Chemical graphs and their basis invariants. Journal of Molecular 
Structure: THEOCHEM, 1999. 466(1-3): p. 211-217. 

90. Skvortsova, M.I., et al., A New Technique for Coding Chemical Structures Based on Basis 
Fragments. Doklady Chemistry, 2002. 382(4/6): p. 33-36. 

91. Oprea, T.I., Chemoinformatics in Drug Discovery. Methods and Principles in Medicinal 
Chemistry, ed. H.K. Raimund Mannhold, Gerd Folkers. 2005: Wiley-VCH Verlag GmbH & Co. 
KGaA. 

92. Leach, A.R., Molecular modelling : principles and applications. 1996, Harlow, England: 
Longman. 

93. Kukol, A., Molecular modeling of proteins. 2008, Totowa, NJ: Humana Press. 
94. Khan, F.I., et al., Thermostable chitinase II from Thermomyces lanuginosus SSBP: Cloning, 

structure prediction and molecular dynamics simulations. J Theor Biol, 2015. 374: p. 107-14. 



 

151 

 

95. Khan, F.I., et al., Molecular mechanism of Ras-related protein Rab-5A and effect of mutations 
in the catalytically active phosphate-binding loop. Journal of Biomolecular Structure and 
Dynamics, 2016: p. 1-14. 

96. Gramany, V., et al., Cloning, expression, and molecular dynamics simulations of a xylosidase 
obtained from Thermomyces lanuginosus. J Biomol Struct Dyn, 2016. 34(8): p. 1681-92. 

97. Khan, F.I., et al., Molecular mechanism of Ras-related protein Rab-5A and effect of mutations 
in the catalytically active phosphate-binding loop. J Biomol Struct Dyn, 2017. 35(1): p. 105-
118. 

98. Khan, F.I., et al., Structure prediction and functional analyses of a thermostable lipase 
obtained from Shewanella putrefaciens. J Biomol Struct Dyn, 2016: p. 1-13. 

99. Zhang, J., et al., A comprehensive review on the molecular dynamics simulation of the novel 
thermal properties of graphene. RSC Adv., 2015. 5(109): p. 89415-89426. 

100. Khan, F.I., et al., Current updates on computer aided protein modeling and designing. 
International Journal of Biological Macromolecules, 2016. 85: p. 48-62. 

101. Alder, B.J. and T.E. Wainwright, Phase Transition for a Hard Sphere System. The Journal of 
Chemical Physics, 1957. 27(5): p. 1208. 

102. Alder, B.J. and T.E. Wainwright, Studies in Molecular Dynamics. I. General Method. The 
Journal of Chemical Physics, 1959. 31(2): p. 459. 

103. Rahman, A., Correlations in the Motion of Atoms in Liquid Argon. Physical Review, 1964. 
136(2A): p. A405-A411. 

104. Stillinger, F.H.R., Aneesur. , Improved simulation of liquid water by molecular dynamics. The 
Journal of Chemical Physics, 1974. 60(4): p. 1545. 

105. Karplus, M. and G.A. Petsko, Molecular dynamics simulations in biology. Nature, 1990. 
347(6294): p. 631-9. 

106. McQuarrie, D.A., Statistical mechanics. 2000, Sausalito, Calif.: University Science Books. xii, 
641 p. 

107. MacKerell, A.D., et al., CHARMM: The Energy Function and Its Parameterization. 2002. 
108. Oostenbrink, C., et al., A biomolecular force field based on the free enthalpy of hydration and 

solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem, 2004. 
25(13): p. 1656-76. 

109. Jorgensen, W.L., D.S. Maxwell, and J. Tirado-Rives, Development and Testing of the OPLS All-
Atom Force Field on Conformational Energetics and Properties of Organic Liquids. Journal of 
the American Chemical Society, 1996. 118(45): p. 11225-11236. 

110. Ponder, J.W. and D.A. Case, Force fields for protein simulations. Adv Protein Chem, 2003. 66: 
p. 27-85. 

111. Wang, J., et al., Development and testing of a general amber force field. J Comput Chem, 
2004. 25(9): p. 1157-74. 

112. D.A. Case, T.A.D., T.E. Cheatham, III, C.L. Simmerling, J. Wang, R.E. Duke, R., et al., AMBER 
12. University of California, San Francisco., 2012. 

113. Van Der Spoel, D., et al., GROMACS: fast, flexible, and free. J Comput Chem, 2005. 26(16): p. 
1701-18. 

114. Phillips, J.C., et al., Scalable molecular dynamics with NAMD. Journal of Computational 
Chemistry, 2005. 26(16): p. 1781-1802. 

115. Plimpton, S., Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of 
Computational Physics, 1995. 117(1): p. 1-19. 

116. Bowers, K.J., et al., Molecular dynamics---Scalable algorithms for molecular dynamics 
simulations on commodity clusters. 2006: p. 84. 

117. Trott, O. and A.J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a 
new scoring function, efficient optimization, and multithreading. J Comput Chem, 2010. 
31(2): p. 455-61. 



 

152 

 

118. Wang, R., L. Lai, and S. Wang, Further development and validation of empirical scoring 
functions for structure-based binding affinity prediction. J Comput Aided Mol Des, 2002. 
16(1): p. 11-26. 

119. Velec, H.F.G., H. Gohlke, and G. Klebe, DrugScoreCSDKnowledge-Based Scoring Function 
Derived from Small Molecule Crystal Data with Superior Recognition Rate of Near-Native 
Ligand Poses and Better Affinity Prediction. Journal of Medicinal Chemistry, 2005. 48(20): p. 
6296-6303. 

120. Eldridge, M.D., et al., Empirical scoring functions: I. The development of a fast empirical 
scoring function to estimate the binding affinity of ligands in receptor complexes. Journal of 
Computer-Aided Molecular Design, 1997. 11(5): p. 425-445. 

121. Jones, G., et al., Development and validation of a genetic algorithm for flexible docking. 
Journal of Molecular Biology, 1997. 267(3): p. 727-748. 

122. Rarey, M., et al., A Fast Flexible Docking Method using an Incremental Construction 
Algorithm. Journal of Molecular Biology, 1996. 261(3): p. 470-489. 

123. Krammer, A., et al., LigScore: a novel scoring function for predicting binding affinities. Journal 
of Molecular Graphics and Modelling, 2005. 23(5): p. 395-407. 

124. B�hm, H.-J., The development of a simple empirical scoring function to estimate the binding 
constant for a protein-ligand complex of known three-dimensional structure. Journal of 
Computer-Aided Molecular Design, 1994. 8(3): p. 243-256. 

125. Lewis, R.M. and V. Torczon, A Globally Convergent Augmented Lagrangian Pattern Search 
Algorithm for Optimization with General Constraints and Simple Bounds. SIAM Journal on 
Optimization, 2002. 12(4): p. 1075-1089. 

126. Kirkpatrick, S., C.D. Gelatt, and M.P. Vecchi, Optimization by Simulated Annealing. Science, 
1983. 220(4598): p. 671-680. 

127. Goldberg, D.E., Genetic algorithms in search, optimization, and machine learning. 1989, 
Reading, Mass.: Addison-Wesley Pub. Co. xiii, 412 p. 

128. Morris, G.M., et al., Automated docking using a Lamarckian genetic algorithm and an 
empirical binding free energy function. Journal of Computational Chemistry, 1998. 19(14): p. 
1639-1662. 

129. Sitkoff, D., K.A. Sharp, and B. Honig, Accurate Calculation of Hydration Free Energies Using 
Macroscopic Solvent Models. The Journal of Physical Chemistry, 1994. 98(7): p. 1978-1988. 

130. Kollman, P.A., et al., Calculating Structures and Free Energies of Complex 
Molecules:  Combining Molecular Mechanics and Continuum Models. Accounts of Chemical 
Research, 2000. 33(12): p. 889-897. 

131. Dong, F., B. Olsen, and N.A. Baker, Computational Methods for Biomolecular Electrostatics. 
2008. 84: p. 843-870. 

132. Gilson, M.K. and B.H. Honig, The dielectric constant of a folded protein. Biopolymers, 1986. 
25(11): p. 2097-2119. 

133. Baker, N.A., Poisson–Boltzmann Methods for Biomolecular Electrostatics. 2004. 383: p. 94-
118. 

134. Fogolari, F., et al., Biomolecular Electrostatics with the Linearized Poisson-Boltzmann 
Equation. Biophysical Journal, 1999. 76(1): p. 1-16. 

135. Amber 14 Reference Manual. 2014. 
136. Garg, R., et al., Comparative Quantitative Structure−Activity Relationship Studies on Anti-HIV 

Drugs. Chemical Reviews, 1999. 99(12): p. 3525-3602. 
137. Pungpo, P., et al., Computer-aided molecular design of highly potent HIV-1 RT inhibitors: 3D 

QSAR and molecular docking studies of efavirenz derivatives. SAR and QSAR in 
Environmental Research, 2006. 17(4): p. 353-370. 

138. Medina-Franco, J.L., et al., Quantitative Structure–activity Relationship Analysis of Pyridinone 
HIV-1 Reverse Transcriptase Inhibitors using the k Nearest Neighbor Method and QSAR-



 

153 

 

based Database Mining. Journal of Computer-Aided Molecular Design, 2005. 19(4): p. 229-
242. 

139. Carlsson, J., L. Boukharta, and J. Åqvist, Combining Docking, Molecular Dynamics and the 
Linear Interaction Energy Method to Predict Binding Modes and Affinities for Non-nucleoside 
Inhibitors to HIV-1 Reverse Transcriptase. Journal of Medicinal Chemistry, 2008. 51(9): p. 
2648-2656. 

140. Rawal, R.K., V. Murugesan, and S.B. Katti, Structure-activity relationship studies on clinically 
relevant HIV-1 NNRTIs. Curr Med Chem, 2012. 19(31): p. 5364-80. 

141. Prabhakar, Y.S., et al., CP-MLR/PLS Directed Structure-Activity Modeling of the HIV-1 RT 
Inhibitory Activity of 2,3-Diaryl-1,3-thiazolidin-4-ones. QSAR & Combinatorial Science, 2004. 
23(4): p. 234-244. 

142. Toropova, A.P., et al., QSAR models for HEPT derivates as NNRTI inhibitors based on Monte 
Carlo method. Eur J Med Chem, 2014. 77: p. 298-305. 

143. Douali, L., et al., Artificial neural networks: non-linear QSAR studies of HEPT derivatives as 
HIV-1 reverse transcriptase inhibitors. Mol Divers, 2004. 8(1): p. 1-8. 

144. Afantitis, A., et al., A novel simple QSAR model for the prediction of anti-HIV activity using 
multiple linear regression analysis. Mol Divers, 2006. 10(3): p. 405-14. 

145. Bazoui, H., et al., QSAR for anti-HIV activity of HEPT derivatives. SAR QSAR Environ Res, 2002. 
13(6): p. 567-77. 

146. Rodriguez-Barrios, F. and F. Gago, Understanding the basis of resistance in the irksome 
Lys103Asn HIV-1 reverse transcriptase mutant through targeted molecular dynamics 
simulations. J Am Chem Soc, 2004. 126(47): p. 15386-7. 

147. Garner, J., et al., A new methodology for the simulation of flexible protein–ligand 
interactions. Journal of Molecular Graphics and Modelling, 2007. 26(1): p. 187-197. 

148. Shen, L., et al., Steered Molecular Dynamics Simulation on the Binding of NNRTI to HIV-1 RT. 
Biophysical Journal, 2003. 84(6): p. 3547-3563. 

149. Das, K., et al., High-resolution structures of HIV-1 reverse transcriptase/TMC278 complexes: 
strategic flexibility explains potency against resistance mutations. Proc Natl Acad Sci U S A, 
2008. 105(5): p. 1466-71. 

150. Xu, H.T., et al., Compensation by the E138K mutation in HIV-1 reverse transcriptase for 
deficits in viral replication capacity and enzyme processivity associated with the M184I/V 
mutations. J Virol, 2011. 85(21): p. 11300-8. 

151. Cohen, C.J., et al., Efficacy and safety of rilpivirine (TMC278) versus efavirenz at 48 weeks in 
treatment-naive HIV-1-infected patients: pooled results from the phase 3 double-blind 
randomized ECHO and THRIVE Trials. J Acquir Immune Defic Syndr, 2012. 60(1): p. 33-42. 

152. Sushko, Y., et al., Prediction-driven matched molecular pairs to interpret QSARs and aid the 
molecular optimization process. J Cheminform, 2014. 6(1): p. 48. 

153. Cumming, J.G., et al., Chemical predictive modelling to improve compound quality. Nat Rev 
Drug Discov, 2013. 12(12): p. 948-62. 

154. Makatini, M.M., et al., Pentacycloundecane-based inhibitors of wild-type C-South African 
HIV-protease. Bioorg Med Chem Lett, 2011. 21(8): p. 2274-7. 

155. Makatini, M.M., et al., Synthesis, screening and computational investigation of 
pentacycloundecane-peptoids as potent CSA-HIV PR inhibitors. European Journal of 
Medicinal Chemistry, 2012. 57: p. 459-467. 

156. Chen, H., et al., Design, microwave-assisted synthesis and HIV-RT inhibitory activity of 2-(2,6-
dihalophenyl)-3-(4,6-dimethyl-5-(un)substituted-pyrimidin-2-yl)thiazolidin -4-ones. Bioorg 
Med Chem, 2009. 17(11): p. 3980-6. 

157. Costi, R., et al., Structure-activity relationship studies on potential non-nucleoside DABO-like 
inhibitors of HIV-1 reverse transcriptase. Antivir Chem Chemother, 2000. 11(2): p. 117-33. 



 

154 

 

158. Kertesz, D.J., et al., Discovery of piperidin-4-yl-aminopyrimidines as HIV-1 reverse 
transcriptase inhibitors. N-benzyl derivatives with broad potency against resistant mutant 
viruses. Bioorg Med Chem Lett, 2010. 20(14): p. 4215-8. 

159. Mai, A., et al., 5-Alkyl-2-alkylamino-6-(2,6-difluorophenylalkyl)-3,4-dihydropyrimidin-4(3H)-
ones, a new series of potent, broad-spectrum non-nucleoside reverse transcriptase inhibitors 
belonging to the DABO family. Bioorg Med Chem, 2005. 13(6): p. 2065-77. 

160. Mai, A., et al., Synthesis and anti-HIV-1 activity of thio analogues of 
dihydroalkoxybenzyloxopyrimidines. J Med Chem, 1995. 38(17): p. 3258-63. 

161. Mai, A., et al., 5-Alkyl-2-(alkylthio)-6-(2,6-dihalophenylmethyl)-3, 4-dihydropyrimidin-4(3H)-
ones: novel potent and selective dihydro-alkoxy-benzyl-oxopyrimidine derivatives. J Med 
Chem, 1999. 42(4): p. 619-27. 

162. Mai, A., et al., Dihydro(alkylthio)(naphthylmethyl)oxopyrimidines: novel non-nucleoside 
reverse transcriptase inhibitors of the S-DABO series. J Med Chem, 1997. 40(10): p. 1447-54. 

163. Mai, A., et al., Structure-based design, synthesis, and biological evaluation of 
conformationally restricted novel 2-alkylthio-6-[1-(2,6-difluorophenyl)alkyl]-3,4-dihydro-5-
alkylpyrimidin-4(3H)-on es as non-nucleoside inhibitors of HIV-1 reverse transcriptase. J Med 
Chem, 2001. 44(16): p. 2544-54. 

164. Nugent, R.A., et al., Pyrimidine thioethers: a novel class of HIV-1 reverse transcriptase 
inhibitors with activity against BHAP-resistant HIV. J Med Chem, 1998. 41(20): p. 3793-803. 

165. Cao, D.S., et al., A new strategy of outlier detection for QSAR/QSPR. J Comput Chem, 2010. 
31(3): p. 592-602. 

166. Qin, H., et al., Synthesis and biological evaluation of novel 2-arylalkylthio-4-amino-6-benzyl 
pyrimidines as potent HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg Med 
Chem Lett, 2010. 20(9): p. 3003-5. 

167. Ragno, R., et al., Computer-aided design, synthesis, and anti-HIV-1 activity in vitro of 2-
alkylamino-6-[1-(2,6-difluorophenyl)alkyl]-3,4-dihydro-5-alkylpyrimidin-4(3H)-o nes as novel 
potent non-nucleoside reverse transcriptase inhibitors, also active against the Y181C variant. 
J Med Chem, 2004. 47(4): p. 928-34. 

168. Rao, A., et al., 2-(2,6-Dihalophenyl)-3-(pyrimidin-2-yl)-1,3-thiazolidin-4-ones as non-
nucleoside HIV-1 reverse transcriptase inhibitors. Antiviral Res, 2004. 63(2): p. 79-84. 

169. Tang, G., et al., Exploration of piperidine-4-yl-aminopyrimidines as HIV-1 reverse 
transcriptase inhibitors. N-Phenyl derivatives with broad potency against resistant mutant 
viruses. Bioorg Med Chem Lett, 2010. 20(20): p. 6020-3. 

170. Zhang, L., et al., Synthesis and biological evaluation of novel 2-arylalkylthio-5-iodine-6-
substituted-benzyl-pyrimidine-4(3H)-ones as potent HIV-1 non-nucleoside reverse 
transcriptase inhibitors. Molecules, 2014. 19(6): p. 7104-21. 

171. Ludovici, D.W., et al., Evolution of anti-HIV drug candidates. Part 3: Diarylpyrimidine (DAPY) 
analogues. Bioorg Med Chem Lett, 2001. 11(17): p. 2235-9. 

172. Tramontano, E. and Y.C. Cheng, HIV-1 reverse transcriptase inhibition by a 
dipyridodiazepinone derivative: BI-RG-587. Biochem Pharmacol, 1992. 43(6): p. 1371-6. 

173. Balzarini, J., et al., Kinetics of inhibition of human immunodeficiency virus type 1 (HIV-1) 
reverse transcriptase by the novel HIV-1-specific nucleoside analogue [2',5'-bis-O-(tert-
butyldimethylsilyl)-beta-D-ribofuranosyl]-3'-spiro-5 "- (4"-amino-1",2"-oxathiole-2",2"-
dioxide)thymine (TSAO-T). J Biol Chem, 1992. 267(17): p. 11831-8. 

174. Kalliokoski, T., et al., Comparability of mixed IC(5)(0) data - a statistical analysis. PLoS One, 
2013. 8(4): p. e61007. 

175. Meng, G., et al., Design and synthesis of a new series of modified CH-diarylpyrimidines as 
drug-resistant HIV non-nucleoside reverse transcriptase inhibitors. Eur J Med Chem, 2014. 
82: p. 600-11. 



 

155 

 

176. Liu, Z., et al., Design, synthesis and anti-HIV evaluation of novel diarylnicotinamide 
derivatives (DANAs) targeting the entrance channel of the NNRTI binding pocket through 
structure-guided molecular hybridization. Eur J Med Chem, 2014. 87: p. 52-62. 

177. Yang, S., et al., Molecular design, synthesis and biological evaluation of BP-O-DAPY and O-
DAPY derivatives as non-nucleoside HIV-1 reverse transcriptase inhibitors. Eur J Med Chem, 
2013. 65: p. 134-43. 

178. Tetko, I.V., Associative neural network. Methods Mol Biol, 2008. 458: p. 185-202. 
179. Tetko, I.V., Neural network studies. 4. Introduction to associative neural networks. J Chem Inf 

Comput Sci, 2002. 42(3): p. 717-28. 
180. Tollenaere, T., Supersab - Fast Adaptive Back Propagation with Good Scaling Properties. 

Neural Networks, 1990. 3(5): p. 561-573. 
181. Matthias Dehmer, K.V., Danail Bonchev, , Statistical Modelling of Molecular Descriptors in 

QSAR/QSPR, ed. F. Emmert-Streib. Wiley-Blackwell. 456. 
182. Jens Sadowski , J.G., Gerhard Klebe, Comparison of Automatic Three-Dimensional Model 

Builders Using 639 X-ray Structures. journal of chemical information and modeling 1994. 34 
(4): p. 701-1028. 

183. Whitley, D.C., M.G. Ford, and D.J. Livingstone, Unsupervised forward selection: a method for 
eliminating redundant variables. J Chem Inf Comput Sci, 2000. 40(5): p. 1160-8. 

184. Breiman, L., Bagging predictors. Machine Learning, 1996. 24(2): p. 123-140. 
185. Tetko, I.V., et al., Development of dimethyl sulfoxide solubility models using 163,000 

molecules: using a domain applicability metric to select more reliable predictions. J Chem Inf 
Model, 2013. 53(8): p. 1990-2000. 

186. Hopkins, A.L., et al., Complexes of HIV-1 reverse transcriptase with inhibitors of the HEPT 
series reveal conformational changes relevant to the design of potent non-nucleoside 
inhibitors. J Med Chem, 1996. 39(8): p. 1589-600. 

187. Bernstein, F.C., et al., The Protein Data Bank: a computer-based archival file for 
macromolecular structures. Arch Biochem Biophys, 1978. 185(2): p. 584-91. 

188. Frisch, M.J., et al., Gaussian 09. 2009, Gaussian, Inc.: Wallingford, CT, USA. 
189. Stewart, J.J., Optimization of parameters for semiempirical methods V: modification of NDDO 

approximations and application to 70 elements. J Mol Model, 2007. 13(12): p. 1173-213. 
190. Forli, S., Raccoon|AutoDock VS: an automated tool for preparing AutoDock virtual 

screenings", . (accessed 01/12/2014). 
191. Sanner, M.F., Python: a programming language for software integration and development. J 

Mol Graph Model, 1999. 17(1): p. 57-61. 
192. Hussain, J. and C. Rea, Computationally efficient algorithm to identify matched molecular 

pairs (MMPs) in large data sets. J Chem Inf Model, 2010. 50(3): p. 339-48. 
193. Holm, S., A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian Journal of 

Statistics, 1979. 6(2): p. 65-70. 
194. Vorberg, S. and I.V. Tetko, Modeling the Biodegradability of Chemical Compounds Using the 

Online CHEmical Modeling Environment (OCHEM) Molecular Informatics Volume 33, Issue 1. 
Molecular Informatics, 2014. 33(1): p. 73-85. 

195. Zhu, H., et al., Combinatorial QSAR modeling of chemical toxicants tested against 
Tetrahymena pyriformis. J Chem Inf Model, 2008. 48(4): p. 766-84. 

196. Tetko, I.V., et al., Can we estimate the accuracy of ADME-Tox predictions? Drug Discov 
Today, 2006. 11(15-16): p. 700-7. 

197. Tetko, I.V., et al., Critical assessment of QSAR models of environmental toxicity against 
Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable 
selection. J Chem Inf Model, 2008. 48(9): p. 1733-46. 

198. Sushko, I., et al., Applicability domains for classification problems: Benchmarking of distance 
to models for Ames mutagenicity set. J Chem Inf Model, 2010. 50(12): p. 2094-111. 



 

156 

 

199. Das, K., et al., Crystallography and the design of anti-AIDS drugs: conformational flexibility 
and positional adaptability are important in the design of non-nucleoside HIV-1 reverse 
transcriptase inhibitors. Prog Biophys Mol Biol, 2005. 88(2): p. 209-31. 

200. Carta, A., et al., Activity and molecular modeling of a new small molecule active against 
NNRTI-resistant HIV-1 mutants. Eur J Med Chem, 2009. 44(12): p. 5117-22. 

201. Verma, R.P. and C. Hansch, An approach toward the problem of outliers in QSAR. Bioorg Med 
Chem, 2005. 13(15): p. 4597-621. 

202. Kim, K.H., Outliers in SAR and QSAR: 2. Is a flexible binding site a possible source of outliers? J 
Comput Aided Mol Des, 2007. 21(8): p. 421-35. 

203. Kim, K.H., Outliers in SAR and QSAR: is unusual binding mode a possible source of outliers? J 
Comput Aided Mol Des, 2007. 21(1-3): p. 63-86. 

204. Tetko, I.V., The perspectives of computational chemistry modeling. J Comput Aided Mol Des, 
2012. 26(1): p. 135-6. 

205. Herbst, A.J., et al., Adult mortality and antiretroviral treatment roll-out in rural KwaZulu-
Natal, South Africa. Bull World Health Organ, 2009. 87(10): p. 754-62. 

206. Bor, J., et al., Increases in adult life expectancy in rural South Africa: valuing the scale-up of 
HIV treatment. Science, 2013. 339(6122): p. 961-5. 

207. Manasa, J., et al., High-levels of acquired drug resistance in adult patients failing first-line 
antiretroviral therapy in a rural HIV treatment programme in KwaZulu-Natal, South Africa. 
PLoS One, 2013. 8(8): p. e72152. 

208. Bacheler, L.T., et al., Human immunodeficiency virus type 1 mutations selected in patients 
failing efavirenz combination therapy. Antimicrob Agents Chemother, 2000. 44(9): p. 2475-
84. 

209. Mobley, D.L. and K.A. Dill, Binding of small-molecule ligands to proteins: "what you see" is 
not always "what you get". Structure, 2009. 17(4): p. 489-98. 

210. Hajduk, P.J., J.R. Huth, and S.W. Fesik, Druggability indices for protein targets derived from 
NMR-based screening data. J Med Chem, 2005. 48(7): p. 2518-25. 

211. Pettit, F.K. and J.U. Bowie, Protein surface roughness and small molecular binding sites. J Mol 
Biol, 1999. 285(4): p. 1377-82. 

212. Kortemme, T. and D. Baker, A simple physical model for binding energy hot spots in protein-
protein complexes. Proc Natl Acad Sci U S A, 2002. 99(22): p. 14116-21. 

213. Lansdon, E.B., et al., Crystal structures of HIV-1 reverse transcriptase with etravirine 
(TMC125) and rilpivirine (TMC278): implications for drug design. J Med Chem, 2010. 53(10): 
p. 4295-9. 

214. Olsson, M.H., et al., PROPKA3: Consistent Treatment of Internal and Surface Residues in 
Empirical pKa Predictions. J Chem Theory Comput, 2011. 7(2): p. 525-37. 

215. Sondergaard, C.R., et al., Improved Treatment of Ligands and Coupling Effects in Empirical 
Calculation and Rationalization of pKa Values. J Chem Theory Comput, 2011. 7(7): p. 2284-
95. 

216. Advanced Chemistry Development, I.T., ON, Canada, ACD/ChemSketch. 2013. 
217. Cornell, W.D., et al., Application of Resp Charges to Calculate Conformational Energies, 

Hydrogen-Bond Energies, and Free-Energies of Solvation. Journal of the American Chemical 
Society, 1993. 115(21): p. 9620-9631. 

218. Bayly, C.I., et al., A well-behaved electrostatic potential based method using charge restraints 
for deriving atomic charges: the RESP model. The Journal of Physical Chemistry, 1993. 
97(40): p. 10269-10280. 

219. Wang, J., et al., Automatic atom type and bond type perception in molecular mechanical 
calculations. J Mol Graph Model, 2006. 25(2): p. 247-60. 

220. Lindorff-Larsen, K., et al., Improved side-chain torsion potentials for the Amber ff99SB 
protein force field. Proteins, 2010. 78(8): p. 1950-8. 



 

157 

 

221. William L Jorgensen, J.C., Jeffry D Madura, Roger W Impey, Michael L Klein, Comparison of 
simple potential functions for simulating liquid water. The Journal of chemical physics, 1983. 
79(2): p. 926-935. 

222. Harvey, M.J. and G. De Fabritiis, An Implementation of the Smooth Particle Mesh Ewald 
Method on GPU Hardware. J Chem Theory Comput, 2009. 5(9): p. 2371-7. 

223. Ryckaert, J.-P., G. Ciccotti, and H.J.C. Berendsen, Numerical integration of the cartesian 
equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal 
of Computational Physics, 1977. 23(3): p. 327-341. 

224. Gotz, A.W., et al., Routine Microsecond Molecular Dynamics Simulations with AMBER on 
GPUs. 1. Generalized Born. J Chem Theory Comput, 2012. 8(5): p. 1542-1555. 

225. Roe, D.R. and T.E. Cheatham, 3rd, PTRAJ and CPPTRAJ: Software for Processing and Analysis 
of Molecular Dynamics Trajectory Data. J Chem Theory Comput, 2013. 9(7): p. 3084-95. 

226. Schmidtke, P., et al., MDpocket: open-source cavity detection and characterization on 
molecular dynamics trajectories. Bioinformatics, 2011. 27(23): p. 3276-85. 

227. Amadei, A., A.B. Linssen, and H.J. Berendsen, Essential dynamics of proteins. Proteins, 1993. 
17(4): p. 412-25. 

228. Bakan, A., L.M. Meireles, and I. Bahar, ProDy: protein dynamics inferred from theory and 
experiments. Bioinformatics, 2011. 27(11): p. 1575-7. 

229. Humphrey, W., A. Dalke, and K. Schulten, VMD: visual molecular dynamics. J Mol Graph, 
1996. 14(1): p. 33-8, 27-8. 

230. Wermuth, C.G., et al., Glossary of terms used in medicinal chemistry (IUPAC 
Recommendations 1998). Pure Appl. Chem., 1998. 70: p. 1129-1143. 

231. Sydow, D., Dynophores: Novel Dynamic Pharmacophores - Implementation of 
Pharmacophore Generation Based on Molecular Dynamics Trajectories and Their Graphical 
Representation. 2015, master thesis, Humboldt-Universität zu Berlin, 
Lebenswissenschaftliche Fakultät. 

232. Wolber, G. and R. Kosara, Pharmacophores from Macromolecular Complexes with 
LigandScout, in Pharmacophores and Pharmacophore Searches, L. Thierry and R.D. 
Hoffmann, Editors. 2006, Wiley-VCH. p. 131-50. 

233. Wolber, G. and T. Langer, LigandScout: 3-D pharmacophores derived from protein-bound 
ligands and their use as virtual screening filters. Journal of Chemical Information and 
Modeling, 2005. 45: p. 160-169. 

234. Bermudez, M., C. Rakers, and G. Wolber, Structural Characteristics of the Allosteric Binding 
Site Represent a Key to Subtype Selective Modulators of Muscarinic Acetylcholine Receptors. 
Molecular Informatics, 2015. 34(8): p. 526-530. 

235. Das, K., et al., Crystal structures of clinically relevant Lys103Asn/Tyr181Cys double mutant 
HIV-1 reverse transcriptase in complexes with ATP and non-nucleoside inhibitor HBY 097. J 
Mol Biol, 2007. 365(1): p. 77-89. 

236. !!! INVALID CITATION !!! 
237. Vijayan, R.S., E. Arnold, and K. Das, Molecular dynamics study of HIV-1 RT-DNA-nevirapine 

complexes explains NNRTI inhibition and resistance by connection mutations. Proteins, 2014. 
82(5): p. 815-29. 

238. Chung, Y.T. and C.I. Huang, Ion condensation behavior and dynamics of water molecules 
surrounding the sodium poly(methacrylic acid) chain in water: a molecular dynamics study. J 
Chem Phys, 2012. 136(12): p. 124903. 

239. Wright, D.W., et al., Thumbs down for HIV: domain level rearrangements do occur in the 
NNRTI-bound HIV-1 reverse transcriptase. J Am Chem Soc, 2012. 134(31): p. 12885-8. 

240. Janssen, P.A., et al., In search of a novel anti-HIV drug: multidisciplinary coordination in the 
discovery of 4-[[4-[[4-[(1E)-2-cyanoethenyl]-2,6-dimethylphenyl]amino]-2- 
pyrimidinyl]amino]benzonitrile (R278474, rilpivirine). J Med Chem, 2005. 48(6): p. 1901-9. 



 

158 

 

241. Das, K., et al., Roles of conformational and positional adaptability in structure-based design 
of TMC125-R165335 (etravirine) and related non-nucleoside reverse transcriptase inhibitors 
that are highly potent and effective against wild-type and drug-resistant HIV-1 variants. J 
Med Chem, 2004. 47(10): p. 2550-60. 

242. Rhee, S.Y., et al., Distribution of human immunodeficiency virus type 1 protease and reverse 
transcriptase mutation patterns in 4,183 persons undergoing genotypic resistance testing. 
Antimicrob Agents Chemother, 2004. 48(8): p. 3122-6. 

243. Bacheler, L., et al., Genotypic correlates of phenotypic resistance to efavirenz in virus isolates 
from patients failing nonnucleoside reverse transcriptase inhibitor therapy. J Virol, 2001. 
75(11): p. 4999-5008. 

244. Eshleman, S.H., et al., Phenotypic drug resistance patterns in subtype A HIV-1 clones with 
nonnucleoside reverse transcriptase resistance mutations. AIDS Res Hum Retroviruses, 2006. 
22(3): p. 289-93. 

245. Rimsky, L., et al., Genotypic and phenotypic characterization of HIV-1 isolates obtained from 
patients on rilpivirine therapy experiencing virologic failure in the phase 3 ECHO and THRIVE 
studies: 48-week analysis. J Acquir Immune Defic Syndr, 2012. 59(1): p. 39-46. 

246. Nizami, B., et al., Molecular insight on the binding of NNRTI to K103N mutated HIV-1 RT: 
Molecular dynamics simulations and dynamic pharmacophore analysis. Molecular 
BioSystems, 2016. 

247. Ren, J., et al., Structural insights into mechanisms of non-nucleoside drug resistance for HIV-1 
reverse transcriptases mutated at codons 101 or 138. FEBS J, 2006. 273(16): p. 3850-60. 

248. Gordon, J.C., et al., H++: a server for estimating pKas and adding missing hydrogens to 
macromolecules. Nucleic Acids Res, 2005. 33(Web Server issue): p. W368-71. 

249. Case, D., et al., Amber 14. 2014. 
250. Maier, J.A., et al., ff14SB: Improving the Accuracy of Protein Side Chain and Backbone 

Parameters from ff99SB. J Chem Theory Comput, 2015. 11(8): p. 3696-713. 
251. Nizami, B., et al., QSAR models and scaffold-based analysis of non-nucleoside HIV RT 

inhibitors. Chemometrics and Intelligent Laboratory Systems, 2015. 148: p. 134-144. 
252. Jensen, F., Introduction to computational chemistry. 2nd ed. 2007, Chichester, England ; 

Hoboken, NJ: John Wiley & Sons. xx, 599 p. 
253. Brändén, C.-I. and J. Tooze, Introduction to protein structure. 1991, New York: Garland Pub. 
254. Chary, K.V.R. and G. Govil, NMR in Biological Systems. Vol. 6. 2008. 

 


